
MIPS (RISC) Design Principles

 Simplicity favors regularity

 fixed size instructions

 small number of instruction formats

 opcode always the first 6 bits

 Smaller is faster

 limited instruction set

 limited number of registers in register file

 limited number of addressing modes

 Make the common case fast

 arithmetic operands from the register file (load-store machine)

 allow instructions to contain immediate operands

 Good design demands good compromises

 three instruction formats

MIPS (originally an acronym for Microprocessor without Interlocked

Pipeline Stages) is a reduced instruction set computer (RISC) instruction

set architecture(ISA) developed by MIPS Computer Systems (now MIPS

Technologies).

Addressing Modes Illustrated
1. Register addressing

op rs rt rd funct Register

word operand

op rs rt offset

2. Base (displacement) addressing

base register

Memory

word or byte operand

3. Immediate addressing

op rs rt operand

4. PC-relative addressing

op rs rt offset

Program Counter (PC)

Memory

branch destination instruction

5. Pseudo-direct addressing

op jump address

Program Counter (PC)

Memory

jump destination instruction ||

MIPS Organization So Far

Processor
Memory

32 bits

230

words

read/write

 addr

read data

write data

word address

(binary)

0…0000
0…0100
0…1000
0…1100

1…1100
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32

32

32

32

5

5

5

PC

ALU

32 32

32

32

32

0 1 2 3

7 6 5 4

byte address

(big Endian)

Fetch

PC = PC+4

Decode Exec

Add
32

32
4

Add
32

32
branch offset

MIPS Arithmetic Logic Unit (ALU)

 Must support the Arithmetic/Logic
operations of the ISA

add, addi, addiu, addu

sub, subu

mult, multu, div, divu

sqrt

and, andi, nor, or, ori, xor, xori

beq, bne, slt, slti, sltiu, sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

 With special handling for

 sign extend – addi, addiu, slti, sltiu

 zero extend – andi, ori, xori

 overflow detection – add, addi, sub

 Our implementation of the MIPS is simplified

 memory-reference instructions: lw, sw

 arithmetic-logical instructions: add, sub, and, or, slt

 control flow instructions: beq, j

 Generic implementation

 use the program counter (PC) to supply
the instruction address and fetch the
instruction from memory (and update the PC)

 decode the instruction (and read registers)

 execute the instruction

 All instructions (except j) use the ALU after reading the
registers

How? memory-reference? arithmetic? control flow?

The Processor: Datapath & Control

Fetch

PC = PC+4

Decode Exec

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

Fetching Instructions

 Fetching instructions involves

 reading the instruction from the Instruction Memory

 updating the PC value to be the address of the next
(sequential) instruction

Read

Address
Instruction

Instruction

Memory

Add

PC

4

 PC is updated every clock cycle, so it does not need an
explicit write control signal just a clock signal

 Reading from the Instruction Memory is a combinational
activity, so it doesn’t need an explicit read control signal

Fetch

PC = PC+4

Decode Exec

clock

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

Decoding Instructions

 Decoding instructions involves
 sending the fetched instruction’s opcode and function field

bits to the control unit

and Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

Control

Unit

 reading two values from the Register File

- Register File addresses are contained in the instruction

Fetch

PC = PC+4

Decode Exec

ediz.saykol
Highlight

ediz.saykol
Highlight

Executing R Format Operations
 R format operations (add, sub, slt, and, or)

 perform operation (op and funct) on values in rs and rt

 store the result back into the Register File (into location rd)

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

overflow

zero

ALU control RegWrite

R-type:

31 25 20 15 5 0

op rs rt rd funct shamt

10

 Note that Register File is not written every cycle (e.g. sw), so

we need an explicit write control signal for the Register File

Fetch

PC = PC+4

Decode Exec

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

Executing Load and Store Operations
 Load and store operations involves

 compute memory address by adding the base register (read from

the Register File during decode) to the 16-bit signed-extended

offset field in the instruction

 store value (read from the Register File during decode) written to

the Data Memory

 load value, read from the Data Memory, written to the Register

File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

overflow

zero

ALU control RegWrite

Data

Memory

Address

Write Data

Read Data

Sign

Extend

MemWrite

MemRead

16 32

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

Executing Branch Operations
 Branch operations involves

 compare the operands read from the Register File during decode
for equality (zero ALU output)

 compute the branch target address by adding the updated PC to

 the 16-bit signed-extended offset field in the instr

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

zero

ALU control

Sign

Extend 16 32

Shift

left 2

Add

4
Add

PC

Branch

target

address

(to branch

control logic)

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

Executing Jump Operations

 Jump operation involves

 replace the lower 28 bits of the PC with the lower 26 bits of the

fetched instruction shifted left by 2 bits

Read

Address
Instruction

Instruction

Memory

Add

PC

4

Shift

left 2

Jump

address

26

4

28

ediz.saykol
Highlight

Creating a Single Datapath from the Parts

 Assemble the datapath segments and add control lines

and multiplexors as needed

 Single cycle design – fetch, decode and execute each

instructions in one clock cycle

 no datapath resource can be used more than once per

instruction, so some must be duplicated (e.g., separate

Instruction Memory and Data Memory, several adders)

 multiplexors needed at the input of shared elements with

control lines to do the selection

 write signals to control writing to the Register File and Data

Memory

 Cycle time is determined by length of the longest path

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

Fetch, R, and Memory Access Portions

MemtoReg

Read

Address
Instruction

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

ALU control RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend 16 32

ALUSrc

Adding the Control
 Selecting the operations to perform (ALU, Register File

and Memory read/write)

 Controlling the flow of data (multiplexor inputs)

I-Type: op rs rt address offset

31 25 20 15 0

R-type:

31 25 20 15 5 0

op rs rt rd funct shamt

10

 Observations

 op field always

in bits 31-26

 addr of registers

to be read are

always specified by the

rs field (bits 25-21) and rt field (bits 20-16); for lw and sw rs is the base

register

 addr. of register to be written is in one of two places – in rt (bits 20-16)

for lw; in rd (bits 15-11) for R-type instructions

 offset for beq, lw, and sw always in bits 15-0

J-type:

31 25 0

op target address

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

Single Cycle Datapath with Control Unit

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend 16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

R-type Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend 16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

Load Word Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend 16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

Branch Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend 16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

Adding the Jump Operation

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend 16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

Shift

left 2

0

1

Jump

32

Instr[25-0]

26
PC+4[31-28]

28

Instruction Critical Paths

Instr. I Mem Reg Rd ALU Op D Mem Reg Wr Total

R-
type

load

store

beq

jump

200 100 200 100 600

200 100 200 200 100 800

 What is the clock cycle time assuming negligible
delays for muxes, control unit, sign extend, PC access,
shift left 2, wires, setup and hold times except:

 Instruction and Data Memory (200 ps)

 ALU and adders (200 ps)

 Register File access (reads or writes) (100 ps)

200 100 200 200 700

200 100 200 500

200 200

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

Single Cycle Disadvantages & Advantages

 Uses the clock cycle inefficiently – the clock cycle must

be timed to accommodate the slowest instruction

 especially problematic for more complex instructions like

floating point multiply

 May be wasteful of area since some functional units

(e.g., adders) must be duplicated since they can not be

shared during a clock cycle

but

 Is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

How Can We Make It Faster?

 Fetch (and execute) more than one instruction at a time

 Superscalar processing

 Start fetching and executing the next instruction before
the current one has completed

 Pipelining – (all?) modern processors are pipelined for
performance

 Remember the performance equation:
 CPU time = CPI * CC * IC

 Under ideal conditions and with a large number of
instructions, the speedup from pipelining is
approximately equal to the number of pipe stages

 A five stage pipeline is nearly five times faster because the CC is
nearly five times faster

ediz.saykol
Highlight

ediz.saykol
Highlight

The Five Stages of Load Instruction

 IFetch: Instruction Fetch and Update PC

 Dec: Registers Fetch and Instruction Decode

 Exec: Execute R-type; calculate memory address

 Mem: Read/write the data from/to the Data Memory

 WB: Write the result data into the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WB lw

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

ediz.saykol
Highlight

