Compiling a C Procedure That Doesn't Call Another Procedure

Let's turm the cxam ple on page 51 into a C proceduare;

int leaf_gxample (int g, 1nt h, int 1, int j)
i
int ¥

F={g+h)-41+));
raturn 3
|

What i the compabed MIPS assembly code!

The parameter variables g, b, |, and | correspond 1o the argument registers
$al, 8al, 847, aml $a3, and 1 cornespords i 350, The compilald program
atarts with the label of the procedure:

Teaf_example:

The mext step is 1o save the registers used by the procedure, The C assignment
statcrment in the procedure body s identical to the crample on page 51,
which wies two temporary regisers, Thus, we need 10 save three registers:
$s0, L0, andd § 11, We “push” the odd values cnto tlie stack by oreating space
for three words on the stack and then store them:

addi $sp,fsp.-12 §F adjust stack to make rocm for 3 1tems
sw $tl, B(¥sp) @& save reglster $L1 for use afterwards
v 3t0, 4(%3p) & save regiater $t0 for use afterwards
iw 350, O(%3p) & save register 350 for use afterwards

Figare 214 shows the stack before, during, and after the procedune call. The
el three statemenis correspaotd 1o the body of the procedure, which fallows

he examplc on page 51

add $t0. %a0,%al # regicter $t0 contains g + A
add 3t].%82,923 # regiater $tl contalins | +)
sub $s50.%t0.5t1 ¢ 7= 3t0 - Stl, which 15 (g + hl=(1 +])

To retwrn the value of £, we copy it into 3 return value register:

add $«0.3s0,.%rero §F returns F (39D = §s0 + 0)

Betore returning, we restore the three old valwes of the registers we saved by
“popping” them from the stack:

Iw %50, 0Cksp) # restore register ¥s0 for caller
1w 3t0, 4(%sp) # restore register $td for caller
W $tl, B8(Espd & restore rogister %€l for callar
addi ¥sp.%¥s5p.12 # adjust stack to delete 3 items

The procedure ends with a jumg register using the return sddress:

Jr o 3ra f junp back to calling rautine

In the example above we used temporary registers and assumed their old values
must be saved and restored. To avoid saving and restoring a register whose value is
never used, which might happen with a temporary register, MIPS software sepa-
rates 18 of the registers into two groups:

B FEO-5t0: 10 temporary registers that are sel preserved by the callee
[called provedureh on a procedure call

W £50-557 .8 saved registers that must be preserved on & procedure call
[1F used, the callee saves and restores them)

This simple convention reduces regster spilling. In the example above, since the
caller (procedure doing the calling) does not expect registers 520 and $£1 to be
preserved across a procedure call, we can drop two stores arnd twe loads from the
code. We still must save and restore 350, since the callee must assume that the
caller necds its vabe.

High address
Bap—+ isp—+
Corperas of mgisier 371
Corpeeras of mgiien 3170
Eop—= CofiemE of regisier 350
Lo AETCrASS H, h =]

FIGURE Z.14 The valu=ss of the stack pointer and the stack (a) befors, (b] during. and {c}
affter the procedure calll. The stack pointer ahsays points oo the “top™ of e siack, or the last word =
the siack in this drasing.

