
CSE431 Chapter 2.1 Irwin, PSU, 2008

Two Key Principles of Machine Design

1. Instructions are represented as numbers and, as
such, are indistinguishable from data

2. Programs are stored in alterable memory (that can
be read or written to)
just like data

 Stored-program concept

 Programs can be shipped as files
of binary numbers – binary
compatibility

 Computers can inherit ready-made
software provided they are
compatible with an existing ISA –
leads industry to align around a
small number of ISAs

Accounting prg

(machine code)

C compiler

(machine code)

Payroll

data

Source code in

C for Acct prg

Memory

CSE431 Chapter 2.2 Irwin, PSU, 2008

MIPS-32 ISA

 Instruction Categories

 Computational

 Load/Store

 Jump and Branch

 Floating Point

- coprocessor

 Memory Management

 Special

R0 - R31

PC

HI

LO

Registers

op

op

op

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

CSE431 Chapter 2.3 Irwin, PSU, 2008

 MIPS fields are given names to make them easier to
refer to

MIPS Instruction Fields

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

CSE431 Chapter 2.4 Irwin, PSU, 2008

Byte Addresses

 Since 8-bit bytes are so useful, most architectures
address individual bytes in memory

 Alignment restriction - the memory address of a word must be
on natural word boundaries (a multiple of 4 in MIPS-32)

 Big Endian: leftmost byte is word address

 IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

 Little Endian: rightmost byte is word address

Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb

3 2 1 0
little endian byte 0

0 1 2 3

big endian byte 0

CSE431 Chapter 2.5 Irwin, PSU, 2008

Review: Unsigned Binary Representation

Hex Binary Decimal

0x00000000 0…0000 0

0x00000001 0…0001 1

0x00000002 0…0010 2

0x00000003 0…0011 3

0x00000004 0…0100 4

0x00000005 0…0101 5

0x00000006 0…0110 6

0x00000007 0…0111 7

0x00000008 0…1000 8

0x00000009 0…1001 9

…

0xFFFFFFFC 1…1100

0xFFFFFFFD 1…1101

0xFFFFFFFE 1…1110

0xFFFFFFFF 1…1111 232 - 1

232 - 2

232 - 3

232 - 4

232 - 1

1 1 1 . . . 1 1 1 1 bit

31 30 29 . . . 3 2 1 0 bit position

231 230 229 . . . 23 22 21 20 bit weight

1 0 0 0 . . . 0 0 0 0 - 1

CSE431 Chapter 2.6 Irwin, PSU, 2008

Review: Signed Binary Representation

2’sc binary decimal

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7 23 - 1 =

-(23 - 1) =

-23 =

1010

complement all the bits

1011

and add a 1

complement all the bits

0101

and add a 1

0110

CSE431 Chapter 2.7 Irwin, PSU, 2008

MIPS Shift Operations

 Need operations to pack and unpack 8-bit characters into
32-bit words

 Shifts move all the bits in a word left or right

 sll $t2, $s0, 8 #$t2 = $s0 << 8 bits

 srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits

 Instruction Format (R format)

 Such shifts are called logical because they fill with

zeros

 Notice that a 5-bit shamt field is enough to shift a 32-bit value

25 – 1 or 31 bit positions

 0 16 10 8 0x00

CSE431 Chapter 2.8 Irwin, PSU, 2008

MIPS Logical Operations

 There are a number of bit-wise logical operations in the
MIPS ISA

 and $t0, $t1, $t2 #$t0 = $t1 & $t2

 or $t0, $t1, $t2 #$t0 = $t1 | $t2

 nor $t0, $t1, $t2 #$t0 = not($t1 | $t2)

 Instruction Format (R format)

 andi $t0, $t1, 0xFF00 #$t0 = $t1 & ff00

 ori $t0, $t1, 0xFF00 #$t0 = $t1 | ff00

 Instruction Format (I format)

 0 9 10 8 0 0x24

 0x0D 9 8 0xFF00

CSE431 Chapter 2.9 Irwin, PSU, 2008

 MIPS procedure call instruction:

 jal ProcedureAddress #jump and link

 Saves PC+4 in register $ra to have a link to the next
instruction for the procedure return

 Machine format (J format):

 Then can do procedure return with a

 jr $ra #return

 Instruction format (R format):

Instructions for Accessing Procedures

0x03 26 bit address

 0 31 0x08

CSE431 Chapter 2.10 Irwin, PSU, 2008

Six Steps in Execution of a Procedure

1. Main routine (caller) places parameters in a place
where the procedure (callee) can access them

 $a0 - $a3: four argument registers

2. Caller transfers control to the callee

3. Callee acquires the storage resources needed

4. Callee performs the desired task

5. Callee places the result value in a place where the
caller can access it

 $v0 - $v1: two value registers for result values

6. Callee returns control to the caller

 $ra: one return address register to return to the point of origin

CSE431 Chapter 2.11 Irwin, PSU, 2008

Aside: Spilling Registers

 What if the callee needs to use more registers than
allocated to argument and return values?

 callee uses a stack – a last-in-first-out queue

low addr

high addr

$sp

 One of the general registers, $sp
($29), is used to address the stack
(which “grows” from high address
to low address)

 add data onto the stack – push

 $sp = $sp – 4
data on stack at new $sp

 remove data from the stack – pop

 data from stack at $sp
$sp = $sp + 4

top of stack

CSE431 Chapter 2.12 Irwin, PSU, 2008

Aside: Allocating Space on the Stack

 The segment of the stack
containing a procedure’s
saved registers and local
variables is its procedure
frame (aka activation record)

 The frame pointer ($fp) points
to the first word of the frame of a
procedure – providing a stable
“base” register for the procedure

-$fp is initialized using $sp on a
call and $sp is restored using
$fp on a return

low addr

high addr

$sp

Saved argument

regs (if any)

Saved return addr

Saved local regs

(if any)

Local arrays &

structures (if

any)

$fp

CSE431 Chapter 2.13 Irwin, PSU, 2008

Aside: Allocating Space on the Heap

 Static data segment for
constants and other static
variables (e.g., arrays)

 Dynamic data segment
(aka heap) for structures
that grow and shrink (e.g.,
linked lists)

 Allocate space on the heap
with malloc() and free it
with free() in C

Memory

0x 0000 0000

Text

(Your code)

Reserved

Static data

0x 0040 0000

0x 1000 0000

0x 1000 8000

0x 7f f f f f f c

Stack

Dynamic data

(heap)

$sp

$gp

PC

CSE431 Chapter 2.14 Irwin, PSU, 2008

The C Code Translation Hierarchy

C program

compiler

assembly code

assembler

object code library routines

executable

linker

loader

memory

machine code

CSE431 Chapter 2.15 Irwin, PSU, 2008

Compiler Benefits

 Comparing performance for bubble (exchange) sort

 To sort 100,000 words with the array initialized to random values
on a Pentium 4 with a 3.06 clock rate, a 533 MHz system bus,
with 2 GB of DDR SDRAM, using Linux version 2.4.20

gcc opt Relative

performance

Clock

cycles (M)

Instr count

(M)

CPI

None 1.00 158,615 114,938 1.38

O1 (medium) 2.37 66,990 37,470 1.79

O2 (full) 2.38 66,521 39,993 1.66

O3 (proc mig) 2.41 65,747 44,993 1.46

 The unoptimized code has the best CPI, the O1 version
has the lowest instruction count, but the O3 version is the
fastest. Why?

CSE431 Chapter 2.16 Irwin, PSU, 2008

The Java Code Translation Hierarchy

Java program

compiler

Class files (Java bytecodes)

Just In Time (JIT)

compiler

Compiled Java methods (machine code)

Java library routines (machine code)

Java Virtual

Machine

CSE431 Chapter 2.17 Irwin, PSU, 2008

Sorting in C versus Java

 Comparing performance for two sort algorithms in C and
Java

 The JVM/JIT is Sun/Hotspot version 1.3.1/1.3.1

Method Opt Bubble Quick Speedup

quick vs

bubble
Relative

performance

C Compiler None 1.00 1.00 2468

C Compiler O1 2.37 1.50 1562

C Compiler O2 2.38 1.50 1555

C Compiler O3 2.41 1.91 1955

Java Interpreted 0.12 0.05 1050

Java JIT compiler 2.13 0.29 338

 Observations?

