
1

MIPS (RISC) Design Principles

Simplicity favors regularity

• fixed size instructions

• small number of instruction formats

• opcode always the first 6 bits

Smaller is faster

• limited instruction set

• limited number of registers in register file

• limited number of addressing modes

Make the common case fast

• arithmetic operands from the register file (load-store machine)

• allow instructions to contain immediate operands

Good design demands good compromises

• three instruction formats

MIPS (originally an acronym for Microprocessor without Interlocked

Pipeline Stages) is a reduced instruction set computer (RISC) instruction

set architecture(ISA) developed by MIPS Computer Systems (now MIPS

Technologies).

2

MIPS-32 ISA

Instruction Categories

• Computational

• Load/Store

• Jump and Branch

• Floating Point

- coprocessor

• Memory Management

• Special

R0 - R31

PC

HI

LO

Registers

op

op

op

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

3

Aside: MIPS Register Convention

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

4

MIPS Arithmetic Instructions

MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

 Each arithmetic instruction performs one operation

 Each specifies exactly three operands that are all contained in

the datapath’s register file ($t0,$s1,$s2)

destination  source1 op source2

 Instruction Format (R format)

0 17 18 8 0 0x22

5

MIPS fields are given names to make them easier to refer to

MIPS Instruction Fields

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

6

MIPS Register File
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

32 5

32

5

5

32

Holds thirty-two 32-bit registers

• Two read ports and

• One write port

 Registers are

 Faster than main memory
- But register files with more locations are slower

(e.g., a 64 word file could be as much as 50% slower than a 32 word file)

- Read/write port increase impacts speed quadratically

 Easier for a compiler to use
- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs. stack

 Can hold variables so that
- code density improves (since register are named with fewer bits than a memory location)

write control

7

MIPS Memory Access Instructions

MIPS has two basic data transfer instructions for accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

The data is loaded into (lw) or stored from (sw) a register in the register file –
a 5 bit address

 The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

 A 16-bit field meaning access is limited to memory locations
within a region of 213 or 8,192 words (215 or 32,768 bytes) of
the address in the base register

8

Load/Store Instruction Format (I format):

 lw $t0, 24($s3)

Machine Language - Load Instruction

35 2410

Memory

data word address (hex)

0x00000000

0x00000004

0x00000008

0x0000000c

0xf f f f f f f f

$s3
0x12004094

2410 + $s3 =
0x120040ac

 $t0

9

 addi $sp, $sp, 4 #$sp = $sp + 4

 slti $t0, $s2, 15 #$t0 = 1 if $s2<15

Machine format (I format):

MIPS Immediate Instructions

0x0A 18 8 0x0F

 Small constants are used often in typical code

 Possible approaches?

 put “typical constants” in memory and load them

 create hard-wired registers (like $zero) for constants like 1

 have special instructions that contain constants !

 The constant is kept inside the instruction itself!

 Immediate format limits values to the range +215–1 to -215

10

MIPS Shift Operations

Need operations to pack and unpack 8-bit characters into 32-bit words

Shifts move all the bits in a word left or right

 sll $t2, $s0, 8 #$t2 = $s0 << 8 bits

 srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits

Instruction Format (R format)

 Such shifts are called logical because they fill with zeros

 Notice that a 5-bit shamt field is enough to shift a 32-bit value 25 – 1

or 31 bit positions

 0 16 10 8 0x00

11

MIPS Logical Operations

There are a number of bit-wise logical operations in the MIPS ISA

 and $t0, $t1, $t2 #$t0 = $t1 & $t2

 or $t0, $t1, $t2 #$t0 = $t1 | $t2

 nor $t0, $t1, $t2 #$t0 = not($t1 | $t2)

Instruction Format (R format)

 andi $t0, $t1, 0xFF00 #$t0 = $t1 & ff00

 ori $t0, $t1, 0xFF00 #$t0 = $t1 | ff00

Instruction Format (I format)

 0 9 10 8 0 0x24

 0x0D 9 8 0xFF00

12

MIPS conditional branch instructions:

 bne $s0, $s1, Lbl #go to Lbl if $s0$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

• Ex: if (i==j) h = i + j;

 bne $s0, $s1, Lbl1

 add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

 Instruction Format (I format):

0x05 16 17 16 bit offset

 How is the branch destination address specified?

13

Specifying Branch Destinations

Use a register (like in lw and sw) added to the 16-bit offset

• which register? Instruction Address Register (the PC)

- its use is automatically implied by instruction

- PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction

• limits the branch distance to -215 to +215-1 (word) instructions from the
(instruction after the) branch instruction, but most branches are local
anyway

PC
Add

32

32 32

32

32

offset

16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst

address

?

Add

4 32

14

We have beq, bne, but what about other kinds of branches (e.g., branch-if-
less-than)? For this, we need yet another instruction, slt

Set on less than instruction:

 slt $t0, $s0, $s1 # if $s0 < $s1 then

 # $t0 = 1 else

 # $t0 = 0

Instruction format (R format):

Alternate versions of slt

 slti $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...

 sltu $t0, $s0, $s1 # if $s0 < $s1 then $t0=1 ...

 sltiu $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...

In Support of Branch Instructions

 0 16 17 8 0x24

15

More Branch Instructions

Can use slt, beq, bne, and the fixed value of 0 in register $zero to
create other conditions

• less than blt $s1, $s2, Label

• less than or equal to ble $s1, $s2, Label

• greater than bgt $s1, $s2, Label

• great than or equal to bge $s1, $s2, Label

slt $at, $s1, $s2 #$at set to 1 if $s1 < $s2

bne $at, $zero, Label

16

MIPS also has an unconditional branch instruction or jump instruction:

 j label #go to label

Other Control Flow Instructions

 Instruction Format (J Format):

0x02 26-bit address

PC

4

32

26

32

00

from the low order 26 bits of the jump instruction

17

MIPS procedure call instruction:

 jal ProcedureAddress #jump and link

Saves PC+4 in register $ra to have a link to the next instruction for the
procedure return

Machine format (J format):

Then can do procedure return with a

 jr $ra #return

Instruction format (R format):

Instructions for Accessing Procedures

0x03 26 bit address

 0 31 0x08

18

MIPS Instruction Classes Distribution

Frequency of MIPS instruction classes for SPEC 2006

(Standard Performance Evaluation Corporation)

Instruction Class Frequency

Integer Ft. Pt.

Arithmetic 16% 48%

Data transfer 35% 36%

Logical 12% 4%

Cond. Branch 34% 8%

Jump 2% 0%

19

Addressing Modes Illustrated

1. Register addressing

op rs rt rd funct Register

word operand

op rs rt offset

2. Base (displacement) addressing

base register

Memory

word or byte operand

3. Immediate addressing

op rs rt operand

4. PC-relative addressing

op rs rt offset

Program Counter (PC)

Memory

branch destination instruction

5. Pseudo-direct addressing

op jump address

Program Counter (PC)

Memory

jump destination instruction ||

20

MIPS Organization So Far

Processor
Memory

32 bits

230

words

read/write

 addr

read data

write data

word address

(binary)

0…0000
0…0100
0…1000
0…1100

1…1100
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32

32

32

32

5

5

5

PC

ALU

32 32

32

32

32

0 1 2 3

7 6 5 4

byte address

(big Endian)

Fetch

PC = PC+4

Decode Exec

Add
32

32
4

Add
32

32
branch offset

21

Six Steps in Execution of a Procedure

1. Main routine (caller) places parameters in a place where the procedure
(callee) can access them

• $a0 - $a3: four argument registers

2. Caller transfers control to the callee

3. Callee acquires the storage resources needed

4. Callee performs the desired task

5. Callee places the result value in a place where the caller can access it

• $v0 - $v1: two value registers for result values

6. Callee returns control to the caller

• $ra: one return address register to return to the point of origin

22

Determinates of CPU Performance

 CPU time = Instruction_count x CPI x clock_cycle

Instruction_
count

CPI clock_cycle

Algorithm

Programming
language

Compiler

ISA

Core
organization

Technology
X

X X

X X

X X

X

X

X

X

X

23

32-bit signed numbers (2’s complement):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
...

1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

Number Representations

maxint

minint

 Converting <32-bit values into 32-bit values

 copy the most significant bit (the sign bit) into the “empty” bits
 0010 -> 0000 0010

 1010 -> 1111 1010

 sign extend versus zero extend (lb vs. lbu)

MSB

LSB

24

MIPS Arithmetic Logic Unit (ALU)

Must support the Arithmetic/Logic operations of the ISA

add, addi, addiu, addu

sub, subu

mult, multu, div, divu

sqrt

and, andi, nor, or, ori, xor, xori

beq, bne, slt, slti, sltiu, sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

 With special handling for

 sign extend – addi, addiu, slti, sltiu

 zero extend – andi, ori, xori

 overflow detection – add, addi, sub

