MIPS (RISC) Design Principles

MIPS (originally an acronym for Microprocessor without Interlocked
Pipeline Stages) is a reduced instruction set computer (RISC) instruction
set architecture(ISA) developed by MIPS Computer Systems (now MIPS

Technologies).

Simplicity favors regularity
» fixed size instructions
o small number of instruction formats
» opcode always the first 6 bits

Smaller is faster
 limited instruction set
» limited number of registers in register file
» limited number of addressing modes

Make the common case fast
« arithmetic operands from the register file (load-store machine)

« allow instructions to contain immediate operands

Good desigh demands good compromises
o three instruction formats

MIPS-32 ISA

Instruction Categories Registers

e Computational
» Load/Store RO - R31
e Jump and Branch
e Floating Point

- coprocessor
« Memory Management PC
. HI
e Special
LO
3 Instruction Formats: all 32 bits wide
op rs rt rd sa funct R format
op rs rt immediate | format
op jump target J format

Aside: MIPS Register Convention

Preserve

Name | Register Usage
Number on call?
$zero 0 constant O (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 |temporaries no
$s0 - $s7 | 16-23 |saved values yes
$t8 - $t9 24-25 |temporaries no
$gp 28 global pointer yes
P$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

MIPS Arithmetic Instructions

MIPS assembly language arithmetic statement

0 Each specifies exactly/three '
the datapath’s registef file (S t\0

nds that ake all contained in
: $s2)

destination < sourcel source2

0 Instruction Format (R format,

0 17 18 8 0 0x22

MIPS Instruction Fields

MIPS fields are given names to make them easier to refer to

op Is rt rd shamt funct
op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

MIPS Register File

. . . Register File
Holds thirty-two 32-bit registers 3 bits
« Two read ports and s [T

) srcl addr _/_, 2 srcl
e One write port data

src2 addr _/5_, 32

5 locations

] dst addr _/_,
0 Registers are) 2, src2
. write data ‘?_. data
e Faster than main memory v
- But register files with more locations are slower T

(e.g., a 64 word file could be as much as 50% slower than a 32 word file) write control

- Read/write port increase impacts speed quadratically
e Easier for a compiler to use
- e.0., (A*B) — (C*D) — (E*F) can do multiplies in any order vs. stack

e Can hold variables so that
- code density improves (since register are named with fewer bits than a memory location)

MIPS Memory Access Instructions

MIPS has two basic data transfer instructions for accessing memory
1w $t0, 4($s3) #load word from memory
SW $t0, 8($s3) #store word to memory

The data is loaded into (lw) or stored from (sw) a register in the register file -
a 5 bit address

0 The memory address - a 32 bit address - is formed by
adding the contents of the base address register to the
offset value

e A 16-bit field meaning access is limited to memory locations

within a region of +2'3 or 8,192 words (+2'> or 32,768 bytes) of
the address in the base register

Machine Language - Load Instruction

Load/Store Instruction Format (I format):

.@’@‘@

35 241ﬂ

T

Memory

OXffffffff

0x120040
24,, + $s3 = $t0 1= e

0x12004094
$s3—

0x0000000c
0x00000008
0x00000004
0x00000000

data word address (hex)

MIPS Immediate Instructions

2 Small constants are used often in typical code

0 Possible approaches?

e put “typical constants” in memory and load them
e create hard-wired registers (like $zero) for constants like 1
e have special instructions that contain constants !

addi S$Ssp, Ssp, 4 #Ssp = Ssp + 4
slti $t0, $s2, 15 #5t0 = 1 1if $s2<15

Machine format (I format):

Ox0A 18 8 OxOF

O The constant is kept inside the instruction itself!
e Immediate format limits values to the range +21°-1 to -21°

MIPS Shift Operations

Need operations to pack and unpack 8-bit characters into 32-bit words

Shifts move all the bits in a word left or right

sll St2, $s0, 8 #5t2 = $s0 << 8 Dbits
srl St2, $s0, 8 #5t2 = $s0 >> 8 bits

Instruction Format (R format)

0 16 10 8 0x00

0 Such shifts are called logical because they fill with zeros

e Notice that a 5-bit shamt field is enough to shift a 32-bit value 2° -1
or 31 bit positions

10

MIPS Logical Operations

There are a number of bit-wise logical operations in the MIPS ISA

and $t0, S$tl, St2 #St0 = Stl & S$t2
or St0, Stl, S$t2 #5t0 = Stl | St2
nor $t0, $tl, $t2 #St0 = not ($Stl | $t2)

Instruction Format (R format)

0 9 10 8 0 0x24
andi $t0, $tl, OxFFOO #St0 = Stl & ££00
ori $t0, $tl, OxFFOO #5t0 = stl | ££00

Instruction Format (I format)

0x0D 9 8 OxFFOO0

11

MIPS Control Flow Instructions

MIPS conditional branch instructions:

bne $s0, $sl1, Lbl #go to Lbl if $s0#Ssl
beqg $s0, S$sl1, Lbl #go to Lbl if $s0=$sl

e EX: if (i==3) h =1 + 7J;

bne $s0, $sl1, Lbll
add $s3, $s0, $sl
Lbll:

Q Instruction Format (I format):

0x05 16 17 16 bit offset

0 How is the branch destination address specified?

12

Specifying Branch Destinations

Use a register (like in lw and sw) added to the 16-bit offset
e which register? Instruction Address Register (the PC)
- its use is automatically implied by instruction

- PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction

o limits the branch distance to -2'> to +2'°>-1 (word) instructions from the

(instruction after the) branch instruction, but most branches are local
anyway

from the low order 16 bits of the branch instruction

416

offset

sign-extend m
\ Y 00

y Z branch dst
32 L, ™~ 32%add address
PC 32 SAdd 2> 32 C)
?

N
\ 4
N

N
v

AN
w\
N

S
w
N

13

In Support of Branch Instructions

less-than)? For this, we need yet another instruction, s1t

Set on less than instruction:

slt $t0, $s0, S$sl # 1if S$s0 < S$sli then
St0 =1 else
St0 =0

Instruction format (R format):

0 16 17 8 0x24
Alternate versions of s1t
slti $t0, $s0, 25 # 1if $s0 < 25 then $t0=1
sltu $t0, $s0, $sl # 1f S$SsO0 < $sl then $t0=1
sltiu $t0, $s0, 25 # if $s0 < 25 then $t0=1

14

More Branch Instructions

Can use slt, beq, bne, and the fixed value of 0 in register Szero to
create other conditions

e less than blt $sl, $s2, Label

slt $Sat, $sl, $s2 #Sat set to 1 if S$sl1 < $s2
bne S$Sat, Szero, Label

 less than or equal to ble $sl1, S$s2, Label
 greater than bgt $s1, $s2, Label
« great than or equal to bge $sl1, S$s2, Label

15

Other Control Flow Instructions

MIPS also has an unconditional branch instruction or jump instruction:

J label #go to label

0 Instruction Format (J Format):

0x02 26-bit address

from the low order 26 bits of the jump instruction

426

A
32
\

00

\ 4

16

Instructions for Accessing Procedures

MIPS procedure call instruction:

jal ProcedureAddress #jump and link

Saves PC+4 in register Sra to have a link to the next instruction for the
procedure return

Machine format (J format):

0x03 26 bit address

Then can do procedure return with a

jr Sra freturn

Instruction format (R format):

0 31 0x08

17

MIPS Instruction Classes Distribution

Frequency of MIPS instruction classes for SPEC 2006

(Standard Performance Evaluation Corporation)

Instruction Class Frequency
Integer Ft. Pt.
Arithmetic 16% 48%
Data transfer 35% 36%
Logical 12% 4%
Cond. Branch 34% 8%
Jump 2% 0%

18

Addressing Modes lllustrated

1. Register addressing
op rs| rt | rd funct Register

A 4

word operand

2. Base (displacement) addressing
op rs rt offslet Memory

word or byte operand

base register
3. Immediate addressing

A 4 A 4
\;/

op rs rt operand
4. PC-relative addressing
op rs rt oﬁslet Memory

branch destination instruction

A 4 A 4
\;/

Program Counter (PC)
5. Pseudo-direct addressing

op jJump address Memory
@., jump destination instruction

Program Counter (PC)

v_V

19

MIPS Organization So Far

Processor
Memory
Register File
1...1100
srcl addr 4> srcl
5 2 data
src2 addr —4» 32
dst add 5 registers .
stadar 75'" ($zero - $ra) ore read/write
write datag? |5, data /addr . 230
e 32 words
branch offset 73;>>Add ‘read data,
oL PC 734, 0 32 | 52
32 _
writedata | . 0...1100
“39 g 0...1000
73‘2’ 4 | 51617 [0..0100
>ALU 32 — 0 /F 1 2 3 — 0...0000 v
73?) / 32 bits " word address
(binary)
byte address
(big Endian)

20

Six Steps in Execution of a Procedure

1.

Main routine (caller) places parameters in a place where the proced
(callee) can access them

« $a0 - $a3: four argument registers
Caller transfers control to the callee

Callee acquires the storage resources needed
Callee performs the desired task

Callee places the result value in a place where the caller can access it
« Sv0 - Svl: two value registers for result values

Callee returns control to the caller
« Sra:one return address register to return to the point of origin

21

Determinates of CPU Performance

CPU time = Instruction_count x CPl x clock cycle
Instruction_ CPI clock cycle
count
Algorithm
J X
Programming X
language
Compiler X X
ISA X X X
Core
organization X X
Technology %

22

Number Representations
32-bit signed numbers (2’s complement):

000 0000 0000 0000 0000 0000 0000 000p),. = O, -
0000 0000 0000 0000 0000 0000 0000 000L.)_ = + 1,., maxin
111 1111 1111 1111 1111 1111 1111 1130.), = + 2,147,483,646,_,
111 1111 1111 1111 1111 1111 1111 1131} = + 2,147,483,647,_,

DOO 0000 0000 0000 0000 0000 0000 00(
D00 0000 0000 0000 0000 0000 0000 0O0C

- 2,147,483,048
- 2,147)483,047

tyo ten

RO O

tyo ten

- PR OO

lp11 1111 1111 1111 1111 1111 1111 11100,

MSR B 2ten minint
111 1111 1111 1111 1111 1111 11171 111

ten

LSB
0 Converting <32-bit values into 32-bit values

e copy the most significant bit (the sign bit) into the “empty” bits
0010 -> 0000 0010

1010 -> 1111 1010

e signextend versus zeroextend (1b vs. lbu)

23

MIPS Arithmetic Logic Unit (ALU)

Must support the Arithmetic/Logic operationszjf W 1SA
1

add, addi, addiu, addu
1

sub, subu
’ A-j?——*
3

mult, multu, div, divu

LU
sqrt >A _jif_+ result

and, andi, nor, or, ori, Xor, Xori B

beq, bne, slt, slti, sltiu, sltu 32 4

m (operation)

0 With special handling for
e signextend —addi, addiu, slti, sltiu
e zeroextend —andi, ori, xori
e overflow detection — add, addi, sub

24

