
Typical Processor Execution Cycle

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in register or storage for later use

Determine successor instruction

4/1/2013 1

Instruction and Data Memory

ADD
SUBTRACT
AND
OR
COMPARE
.
.
.

01010
01110
10011
10001
11010
.
.
.

Programmer's View

Computer's View

CPU

Memory

I/O

Computer
Program
(Instructions)

Princeton (Von Neumann) Architecture

--- Data and Instructions mixed in same
 unified memory

--- Program as data

--- Storage utilization

--- Single memory interface

Harvard Architecture

--- Data & Instructions in
 separate memories

--- Has advantages in certain
 high performance
 implementations

--- Can optimize each memory

4/1/2013 2

Basic Addressing Classes

4/1/2013 3

Stack Architectures

4/1/2013 4

Accumulator Architectures

4/1/2013 5

Register-to-Memory Architectures

4/1/2013 6

Register-to-Register: Load-Store
Architectures

4/1/2013 7

Memory-to-Memory Architectures

4/1/2013 8

Comparing Number of Instructions
Code sequence for (C = A + B) for four classes of instruction
sets:

Stack Accumulator

Register

(load-store)

Push A Load A Load R1,A

Push B Add B Load R2,B

Add Store C

Register

(register-memory)

Load R1,A

Add R1,B

Store C, R1 Add R3,R1,R2

Pop C Store C,R3

Cycle

Seconds

nInstructio

Cycles
nsInstructio

ePerformanc
imeExecutionT 

1

4/1/2013 9

General Purpose Registers Dominate

• Advantages of registers
– Registers are faster than memory
– Registers compiler technology has evolved to efficiently

generate code for register files
• E.g., (A*B) – (C*D) – (E*F) can do multiplies in any order

vs. stack

– Registers can hold variables
• Memory traffic is reduced, so program is sped up

(since registers are faster than memory)

– Code density improves (since register named with fewer
bits than memory location)

– Registers imply operand locality

4/1/2013 10

Typical Operations (since 1960)
Data Movement Load (from memory)

Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Logical not, and, or, set, clear

Shift shift left/right, rotate left/right

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return

Interrupt trap, return

Synchronization test & set (atomic r-m-w)

String search, translate
Graphics (MMX) parallel subword ops (4 16bit add)

4/1/2013 11

7 0

1019

1018

1017

1016

1015

1014

1013

1012

1011

1010 31 24 23 16 15 8 7 0

1009

1008

1007

1006

1005

1004

1003

1002

1001

1000

Memory Addressing: Endianess

Little Endian: address of least significant byte =
word address (xx00 = Little End of word)

Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

Big Endian

Little Endian

Big Endian: address of most significant byte = word
address (xx00 = Big End of word)

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

4/1/2013 12

Encoding
Variable:

Fixed:

Hybrid:

…
…

• If code size is most important, use variable length instructions

• If performance is most important, use fixed length instructions

• Recent embedded machines (ARM, MIPS) added optional mode to execute subset of 16-bit
wide instructions (Thumb, MIPS16); per procedure decide performance or density

• Some architectures actually exploring on-the-fly decompression for more density.

4/1/2013 13

RISC vs. CISC
• CISC (complex instruction set computer)
 – VAX, Intel X86, IBM 360/370, etc.
• RISC (reduced instruction set computer)
 – MIPS, DEC Alpha, SUN Sparc, IBM 801

4/1/2013 14

RISC – CISC Instruction Set Design

4/1/2013 15

MIPS Instruction Formats

All instructions
32 bits wide

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Base+index

+

Memory

immed op rs rt Immediate

immed op rs rt

PC

PC-relative

+

Memory

MIPS (originally an acronym for Microprocessor without Interlocked Pipeline
Stages) is a reduced instruction set computer (RISC) instruction set
architecture(ISA) developed by MIPS Computer Systems (now MIPS
Technologies).

4/1/2013 16

Instruction Set Design Metrics

• Static Metrics

– How many bytes does the program occupy in memory?

• Dynamic Metrics

– How many instructions are executed?

– How many bytes does the processor fetch to execute the program?

– How many clocks are required per instruction?

Cycle

Seconds

nInstructio

Cycles
nsInstructio

ePerformanc
imeExecutionT 

1

4/1/2013 17

Instruction Sequencing
• The next instruction to be executed is typically implied

– Instructions execute sequentially
– Instruction sequencing increments a Program Counter

• Sequencing flow is disrupted conditionally and unconditionally
– The ability of computers to test results and conditionally instructions

is one of the reasons computers have become so useful

Instruction 1

Instruction 2

Instruction 3

Instruction 1

Instruction 2

Conditional Branch

Instruction 4 Branch instructions are ~20% of all
instructions executed 4/1/2013 18

