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Instruction and Data Memory 
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Princeton (Von Neumann) Architecture 

---   Data and Instructions mixed in same 
       unified memory 
 
---   Program as data 
 
---   Storage utilization 
 
---   Single memory interface 

Harvard Architecture 

---   Data & Instructions in 
       separate memories 
 
---   Has advantages in certain 
       high performance 
       implementations 
 
---   Can optimize each memory 
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Basic Addressing Classes 
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Stack Architectures 
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Accumulator Architectures 
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Register-to-Memory Architectures 
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Register-to-Register:  Load-Store 
Architectures 

4/1/2013 7 



Memory-to-Memory Architectures 
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Comparing Number of Instructions 
Code sequence for (C = A + B) for four classes of instruction 
sets: 

Stack Accumulator 

Register  

(load-store) 

Push A Load  A Load  R1,A 

Push B Add   B Load  R2,B 

Add Store C 

Register  

(register-memory) 

Load  R1,A 

Add   R1,B 

Store C, R1 Add   R3,R1,R2 

Pop  C Store C,R3 
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General Purpose Registers Dominate 

• Advantages of registers 
– Registers are faster than memory 
– Registers compiler technology has evolved to efficiently 

generate code for register files 
• E.g., (A*B) – (C*D) – (E*F) can do multiplies in any order  

vs. stack 

– Registers can hold variables 
• Memory traffic is reduced, so program is sped up  

(since registers are faster than memory) 

– Code density improves (since register named with fewer  
bits than memory location) 

– Registers imply operand locality 
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Typical Operations (since 1960) 
Data Movement Load (from memory) 

Store (to memory) 
memory-to-memory move 
register-to-register move 
input (from I/O device) 
output (to I/O device) 
push, pop (to/from stack) 

Arithmetic integer (binary + decimal) or FP 
Add, Subtract, Multiply, Divide 

Logical not, and, or, set, clear 

Shift shift left/right, rotate left/right 

Control (Jump/Branch) unconditional, conditional 

Subroutine Linkage call, return 

Interrupt trap, return 

Synchronization test & set (atomic r-m-w) 

String search, translate 
Graphics (MMX) parallel subword ops (4 16bit add) 
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Memory Addressing: Endianess 

Little Endian: address of least significant byte = 
word address (xx00 = Little End of word) 

Intel 80x86, DEC Vax, DEC Alpha (Windows NT) 

Big Endian 

Little Endian 

Big Endian: address of most significant byte = word 
address (xx00 = Big End of word) 

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA 
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Encoding 
Variable: 
 
 
 
Fixed: 
 
 
 
Hybrid: 

… 
… 

• If code size is most important, use variable length instructions 

• If performance is most important, use fixed length instructions 

• Recent embedded machines (ARM, MIPS) added optional mode to execute subset of 16-bit 
wide instructions (Thumb, MIPS16); per procedure decide performance or density 

• Some architectures actually exploring on-the-fly decompression for more density. 
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RISC vs. CISC 
• CISC (complex instruction set computer) 
 – VAX, Intel X86, IBM 360/370, etc. 
• RISC (reduced instruction set computer) 
 – MIPS, DEC Alpha, SUN Sparc, IBM 801 
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RISC – CISC Instruction Set Design 
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MIPS Instruction Formats 

All instructions 
32 bits wide 

op rs rt rd 

immed 

register 

Register (direct) 

op rs rt 

register 

Base+index 

+ 

Memory 

immed op rs rt Immediate 

immed op rs rt 

PC 

PC-relative 

+ 

Memory 

MIPS (originally an acronym for Microprocessor without Interlocked Pipeline 
Stages) is a reduced instruction set computer (RISC) instruction set 
architecture(ISA) developed by MIPS Computer Systems (now MIPS 
Technologies). 
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Instruction Set Design Metrics 

• Static Metrics 

– How many bytes does the program occupy in memory? 

• Dynamic Metrics 

– How many instructions are executed? 

– How many bytes does the processor fetch to execute the program? 

– How many clocks are required per instruction? 
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Instruction Sequencing 
• The next instruction to be executed is typically implied 

– Instructions execute sequentially 
– Instruction sequencing increments a Program Counter 

 
 
 
 
 

• Sequencing flow is disrupted conditionally and unconditionally 
– The ability of computers to test results and conditionally instructions 

is one of the reasons computers have become so useful 

Instruction 1 

Instruction 2 

Instruction 3 

Instruction 1 

Instruction 2 

Conditional Branch 

Instruction 4 Branch instructions are ~20% of all 
instructions executed 4/1/2013 18 


