Typical Processor Execution Cycle
!

Instruction Obtain instruction from program storage
Fetch

l

Instruction Determine required actions and instruction size
Decode

l

Operand Locate and obtain operand data
Fetch

l

Execute Compute result value or status

l

Result Deposit results in register or storage for later use
Store

l

Next Determine successor instruction

Instruction
|

Instruction and Data Memory

Programmer's View

ADD / 01010

SUBTRACT 01110
AND 10011
OR 10001
COMPARE 11010

Computer's View

Princeton (Von Neumann) Architecture

--- Data and Instructions mixed in same
unified memory

--- Program as data
--- Storage utilization

--- Single memory interface
4/1/2013

CPU

Memory

/O

Harvard Architecture

--- Data & Instructions in
separate memories

--- Has advantages in certain
high performance
implementations

--- Can optimize each memory
2

Basic Addressing Classes

(a) Stack (b) Accumulator (c) Register-memory (d) Register-register/load-store

—
"

Processor

TOS

4/1/2013 © 2003 Elsevier Science (USA). Al rights reserved. 3

Stack Architectures

e Stack: First-In Last-Out data structure (FILO)

* Instruction operands
— None for ALU operations Stack A=B+ (C*D)
— One for push/pop M TOS | L push B
* Advantages:
— Short instructions - = push C
— Compiler is easy to write \ ALU / push D
* Disadvantages nul
— Code is nefficient
e Fix: random access to stacked values | add
— Stack size & access latency pop A
* Fix : register file or cache for top entries
* Examples Memory
— 60s: Burroughs B5500/6500, HP 3000/70
— Today: Java VM PC

4/1/2013

Accumulator Architectures

* Single register (accumulator)

e Instructions T ACC |
— ALU (Acc « Acc + *M) — 1 A=Bt (C*D)
— Load to accumulator (Acc < *M)
— Store from accumulator (*M « Acc) \ﬂ-g/ load C
* Instruction operands mul D
— One explicit (memory address) 2dd B
— One implicit (accumulator)
e Attributes: store A
— Short instructions
— Minimal internal state; simple design Memory

— Many loads and stores

 Examples: [—L_PC
— Early machines: IBM 7090, DEC PDP-8
— Today: DSP architectures

4/1/2013

Register-to-Memory Architectures

One memory address in ALU ops R, |
Typically 2-operand ALU ops I A=B+ (C*D)
e
Advantages
1 < ‘ R, load R1<-C
— Small instruction count R
: Q mul RI<-R1*D
— Dense encoding —
Disadvantages _'/ add R1<-RI+E
\ ALU
— Result destroys an operand store A<-RI1
— Instruction length varies
— Clocks per instruction varies
— Harder to pipeline]
Examples
— IBM 360/370, VAX
Memory

Register-to-Register: Load-Store
Architectures

No memory addresses in ALU ops R
e

Typically 3-operand ALU ops - . —

. . e 2 A=B+ (C*D)
— Bigger encoding, but simplifies R,
register allocation R load R1<-C

0

Advantages load R2<-D

— Simple fixed-length instructions
_ o \ ALg/ load R3<-B
— Easily pipelined

: 1 R4<-R1*R2
Disadvantages i
— Higher instruction count add R5<-R4+R3
Examples R store A<-R5
— CDC6600, CRAY-1, most RISCs
Memory

e

Memory-to-Memory Architectures

All ALU operands from memory addresses
Advantages

— No register wastage
D=B+ (C*D)

— Lowest instruction count

Disadvantages mul D <- C*D

— Large variation in instruction length add D <= D+B

— Large variation in clocks per instructions
— Huge memory traffic

Examples
— VAX

4/1/2013

Comparing Number of Instructions

Code sequence for (C = A + B) for four classes of instruction
sefts:

Register Register
Stack Accumulator (register-memory) (load-store)
Push A Load A Load R1,A Load R1,A
Push B Add B Add R1,B Load R2,B
Add Store C Store C, R1 Add R3,R1R2
Pop C Store CR3

Cycles Seconds

. 1 :
ExecutionT Ime = = Instructions x X
Performance Instruction Cycle

General Purpose Registers Dominate

* Advantages of registers
— Registers are faster than memory

— Registers compiler technology has evolved to efficiently
generate code for register files
* E.g., (A*B) — (C*D) — (E*F) can do multiplies in any order
vs. stack
— Registers can hold variables

 Memory traffic is reduced, so program is sped up
(since registers are faster than memory)

— Code density improves (since register named with fewer
bits than memory location)

— Registers imply operand locality

Typical Operations (since 1960)

Data Movement

Arithmetic

Shift
Logical
Control (Jump/Branch)

Subroutine Linkage
Interrupt
Synchronization

String
Graphics (MMX)

Load (from memory)
Store (to memory)
memory-to-memory move
register-to-register move
input (from I/0O device)
ou’rE‘u‘r (to I/0 device)
push, pop (to/from stack)

integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

shift left/right, rotate left/right
not, and, or, set, clear

unconditional, conditional

call, return
trap, return
test & set (atomic r-m-w)

search, translate
parallel subword ops (4 16bit add)

Memory Addressing: Endianess

Endian: address of most significant byte = word

1019

Bi
. . ad%ress (xx00 = Big End of word)

1018

1017

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

1016

1015

1014

1013

Big Endian

1012

1011

1010

31 Y2423 V1615 Y 87 " o0

1009

1008

1007

Little Endian

1006

1005

1004

1003

Little Endian: address of least significant byte =

1002

word address (xx00 = Little End of word

1001

Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

1000

4/1/2013

12

Encoding

Variable:

Fixed: _

Hybrid:

* If code size is most important, use variable length instructions
* If performance is most important, use fixed length instructions

* Recent embedded machines (ARM, MIPS) added optional mode to execute subset of 16-bit
wide instructions (Thumb, MIPS16); per procedure decide performance or density

* Some architectures actually exploring on-the-fly decompression for more density.

4/1/2013 13

RISC vs. CISC

e CISC (complex instruction set computer)
— VAX, Intel X86, IBM 360/370, etc.

e RISC (reduced instruction set computer)
— MIPS, DEC Alpha, SUN Sparc, IBM 801

- Characteristics of ISAs

CISC RISC
Variable length Single word
instruction instruction
Variable format Fixed-field
decoding
Memory operands Load/store
architecture

Complex operations Simple
operations

4/1/2013

14

RISC — CISC Instruction Set Design

* The historical background:

- In first 25 years (1945-70) performance came from both
technology and design.

- Design considerations:
o small and slow memories: compact programs are fast.
o small no. of registers: memory operands.

o attempts to bridge the semantic gap: model high level language
features in instructions.

o no need for portability: same vendor application, OS5 and
hardware.

o backward compatibility: every new ISA must carry the good
and bad of all past ones.

Result: powerful and complex instructions that are
rarely used.

4/1/2013

15

MIPS Instruction Formats

MIPS (originally an acronym for Microprocessor without Interlocked Pipeline
Stages) is a reduced instruction set computer (RISC) instruction set
architecture(ISA) developed by MIPS Computer Systems (now MIPS

Technologies).

Register (direct) op I r'sl r"rl r'dI

All instructions
32 bits wide

Immediate M r'SI rt

Base+index M i'sl r"rl immed I 'Memory
I I (+>
PC-relative op I r'SI r'TI immed

Y2 ()

Instruction Set Design Metrics

* Static Metrics
— How many bytes does the program occupy in memory?
* Dynamic Metrics
— How many instructions are executed?
— How many bytes does the processor fetch to execute the program?
— How many clocks are required per instruction?

. 1 : Cycles Seconds
ExecutionT ime = = Instructions x — X
Performance Instruction Cycle

Instruction Sequencing

* The next instruction to be executed is typically implied
— Instructions execute sequentially
— Instruction sequencing increments a Program Counter

Instruction 1

Instruction 2

Instruction 3

v
* Sequencing flow is disrupted conditionally and unconditionally

— The ability of computers to test results and conditionally instructions
is one of the reasons computers have become so useful

Instruction 1

Instruction 2

Conditional Branch >

Instruction 4

Branch instructions are ~20% of all
4/1/2013 v instructions executed 18

