
1

Computer Architecture’s Changing Definition

1950s Computer Architecture

• Computer Arithmetic

1960s

• Operating system support, especially memory management

1970s to mid 1980s Computer Architecture

• Instruction Set Design, especially ISA appropriate for compilers

• Vector processing and shared memory multiprocessors

1990s Computer Architecture

• Design of CPU, memory system, I/O system, Multi-processors, Networks

• Design for VLSI

2000s Computer Architecture:

• Special purpose architectures, Functionally reconfigurable, Special
considerations for low power/mobile processing, highly parallel
structures

2

Levels of Representation

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal Spec

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

ALUOP[0:3] <= InstReg[9:11] & MASK

3

Levels of Abstraction

Application

Libraries

Operating System

Programming Language

Assembler Language

Graphical Interface

Processor IO System

Logic Design

Datapath and Control

Circuit Design

Semiconductors

Materials

Firmware

Circuits and devices

Fabrication

Digital Design
Computer Design

Application
Programming

System Programming

Microprogramming

Instruction Set Architecture - “Machine Language”

4

This Course Focuses on General Purpose Processors

A general-purpose computer system

• Uses a programmable processor

• Can run “any” application

• Potentially optimized for some
class of applications

• Common names: CPU, DSP, NPU,
microcontroller, microprocessor

Computers are pervasive – servers, standalone PCs,
network processors, embedded processors, …

Control

Datapath

Memory

Processor

Input

Output

MIT Whirlwind, 1951

Unified main memory

• For both programs & data

• Von Neumann computer

Busses & controllers to connect
processor, memory, IO devices

5

Metrics of Efficiency - Examples

Desktop computing

• Examples: PCs, workstations

• Metrics: performance (latency), cost, time to market

Server computing

• Examples: web servers, transaction servers, file servers

• Metrics: performance (throughput), reliability, scalability

Embedded computing

• Examples: microwave, printer, cell phone, video console

• Metrics: performance (real-time), cost, power consumption,
complexity

6

Moore’s Law

Moore’s “Law” - The observation made in 1965

by Gordon Moore, co-founder of Intel, that the

number of transistors per square inch on

integrated circuits had doubled every year since

the integrated circuit was invented. Moore

predicted that this trend would continue for

the foreseeable future.

In subsequent years, the pace slowed down a

bit, but data density has doubled

approximately every 18 months, and this is

the current definition of Moore's Law, which

Moore himself has blessed. Most experts,

including Moore himself, expect Moore's Law to

hold for at least another two decades.

7

DRAM Evolution

size

Year

B
it

s

1000

10000

100000

1000000

10000000

100000000

1000000000

1970 1975 1980 1985 1990 1995 2000

Year Capacity Access

1980 64 Kb 250 ns

1983 256 Kb 220 ns

1986 1 Mb 190 ns

1989 4 Mb 165 ns

1992 16 Mb 145 ns

1996 64 Mb 120 ns

1999 256 Mb 100 ns

2002 1Gb 80 ns

8

Performance Perspectives

Purchasing perspective

• Given a collection of machines, which has the

- Best performance ?

- Least cost ?

- Best performance / cost ?

Design perspective

• Faced with design options, which has the

- Best performance improvement ?

- Least cost ?

- Best performance / cost ?

Both require

• basis for comparison

• metric for evaluation

9

Definitions

Performance is typically in units-per-second

• bigger is better

If we are primarily concerned with response time

• performance = 1
 execution_time

" X is n times faster than Y" means

n
ePerformanc

ePerformanc

imeExecutionT

imeExecutionT

y

x

x

y

10

Benchmarks

Micro-benchmarks

• Measure one performance dimension

- Cache bandwidth

- Memory bandwidth

- Procedure call overhead

• Insight into the underlying performance factors

• Not a good predictor of application performance

Macro-benchmarks

• Application execution time

- Measures overall performance, but on just one application

- Need application suite

11

Why Do Benchmarks?

How we evaluate differences

• Different systems

• Changes to a single system

Provide a target

• Benchmarks should represent large class of important
programs

• Improving benchmark performance should help many
programs

For better or worse, benchmarks shape a field

Good ones accelerate progress

• good target for development

Bad benchmarks hurt progress

• help real programs v. sell machines/papers?

• Inventions that help real programs don’t help benchmark

12

Metrics of Processor Performance

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Seconds per program

Useful Operations per second

Instructions perform
read/write/load/store operations
in a series of clock cycles.

13

Organizational Trade-offs

Compiler

Programming

Language

Application

Datapath

Control

Transistors Wires Pins

ISA

Function Units

Instruction Mix

Cycle Time

CPI

Cycles-Per-Instruction (CPI)

 is a useful design measure
relating the Instruction Set
Architecture with the
Implementation of that
architecture, and the program
measured

e.g. Can we handle more
than one instruction in
one clock cycle?

14

Processor Cycles

Clock

.

.

.

.

.

.

.

.

.

.

.

.
Combination Logic

Cycle

Most computers have fixed, repeating clock cycles

15

CPU Performance

CPI Clock rate

16

Cycles Per Instruction (Throughput)

“Instruction Frequency”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

“Cycles per Instruction”

j

n

j
j I CPI TimeCycle time CPU

1

Count nInstructio

I
 F where F CPI CPI j

j

n

j
jj

1

Ij is the count of
instruction-j in
the total
instruction set

18

Example

How much faster would the machine be if a better data cache reduced the
average load time to 2 cycles?

• Load 20% x 2 cycles = .4

• Total CPI 2.2 1.6

• Relative performance is 2.2 / 1.6 = 1.38 faster

How does this compare with reducing the branch instruction to 1 cycle?

• Branch 20% x 1 cycle = .2

• Total CPI 2.2 2.0

• Relative performance is 2.2 / 2.0 = 1.1

Typical Mix

Op Freq Cycles CPI

ALU 50% 1 0.5

Load 20% 5 1.0

Store 10% 3 0.3

Branch 20% 2 0.4

 2.2

Remember:

CPI is F x #cycles

0.5 + 0.4 + 0.3 + 0.4

19

Evaluating Instruction Sets and Implementation

Design-time metrics:

• Can it be implemented, in how long, at what cost?

• Can it be programmed? Ease of compilation?

Static Metrics:

• How many bytes does the program occupy in memory?

Dynamic Metrics:

• How many instructions are executed?

• How many bytes does the processor fetch to execute the program?

• How many clocks are required per instruction?

Best Metric:
 Time to execute the program!

NOTE: Depends on instructions set, processor
organization, and compilation techniques.

CPI

Inst. Count Cycle Time

21

Clocking Methodology

All storage elements are clocked by the same clock edge

• Inputs are updated at each clock tick

• All outputs MUST be stable before the next clock tick

Clock

.

.

.

.

.

.

.

.

.

.

.

.
Combination Logic

22

Critical Path & Cycle Time

Instructions follows various paths in these logic gates...

Critical path: the slowest path between any two storage devices

Cycle time is a function of the critical path

Clock

.

.

.

.

.

.

.

.

.

.

.

.

