Computer Architecture's Changing Definition

1950s Computer Architecture

- Computer Arithmetic

1960s

- Operating system support, especially memory management

1970s to mid 1980s Computer Architecture

- Instruction Set Design, especially ISA appropriate for compilers
- Vector processing and shared memory multiprocessors

1990s Computer Architecture

- Design of CPU, memory system, I/O system, Multi-processors, Networks
- Design for VLSI

2000s Computer Architecture:

- Special purpose architectures, Functionally reconfigurable, Special considerations for low power/mobile processing, highly parallel structures

Levels of Representation

Levels of Abstraction

This Course Focuses on General Purpose Processors

A general-purpose computer system

- Uses a programmable processor
- Can run "any" application
- Potentially optimized for some class of applications
- Common names: CPU, DSP, NPU, microcontroller, microprocessor

MIT Whirlwind, 1951

Unified main memory

- For both programs \& data
- Von Neumann computer

Busses \& controllers to connect processor, memory, IO devices

Computers are pervasive - servers, standalone PCs, network processors, embedded processors, ...

Metrics of Efficiency - Examples

Desktop computing

- Examples: PCs, workstations
- Metrics: performance (latency), cost, time to market

Server computing

- Examples: web servers, transaction servers, file servers
- Metrics: performance (throughput), reliability, scalability

Embedded computing

- Examples: microwave, printer, cell phone, video console
- Metrics: performance (real-time), cost, power consumption, complexity

Moore's Law

Moore's "Law" - The observation made in 1965 by Gordon Moore, co-founder of Intel, that the number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented. Moore predicted that this trend would continue for the foreseeable future.

In subsequent years, the pace slowed down a bit, but data density has doubled approximately every 18 months, and this is the current definition of Moore's Law, which Moore himself has blessed. Most experts, including Moore himself, expect Moore's Law to hold for at least another two decades.

64x more devices since 1992 $4 x$ faster devices

DRAM Evolution

Performance Perspectives

Purchasing perspective

- Given a collection of machines, which has the
- Best performance?
- Least cost ?
- Best performance / cost ?

Design perspective

- Faced with design options, which has the
- Best performance improvement ?
- Least cost ?
- Best performance / cost ?

Both require

- basis for comparison
- metric for evaluation

Definitions

Performance is typically in units-per-second

- bigger is better

If we are primarily concerned with response time

- performance = \qquad
" X is n times faster than Y " means

$$
\frac{\text { ExecutionTime }_{y}}{\text { ExecutionTime }_{x}}=\frac{\text { Performance }_{x}}{\text { Performance }_{y}}=n
$$

Benchmarks

Micro-benchmarks

- Measure one performance dimension
- Cache bandwidth
- Memory bandwidth
- Procedure call overhead
- Insight into the underlying performance factors
- Not a good predictor of application performance

Macro-benchmarks

- Application execution time
- Measures overall performance, but on just one application
- Need application suite

Why Do Benchmarks?

How we evaluate differences

- Different systems
- Changes to a single system

Provide a target

- Benchmarks should represent large class of important programs
- Improving benchmark performance should help many programs

For better or worse, benchmarks shape a field
Good ones accelerate progress

- good target for development

Bad benchmarks hurt progress

- help real programs v. sell machines/papers?
- Inventions that help real programs don't help benchmark

Metrics of Processor Performance

Instructions perform read/write/load/store operations in a series of clock cycles.

Organizational Trade-offs

Cycles-Per-Instruction (CPI)
is a useful design measure relating the Instruction Set Architecture with the Implementation of that architecture, and the program measured
e.g. Can we handle more than one instruction in one clock cycle?

Processor Cycles

Most computers have fixed, repeating clock cycles

CPU Performance

$$
\begin{aligned}
& \text { CPUtime }=\frac{\text { Seconds }}{\text { Pr } \text { ogram }}=\frac{\text { Cycles }}{\text { Pr ogram }} \cdot \frac{\text { Seconds }}{\text { Cycle }} \\
& \text { CPUtime }=\frac{\text { Instructions }}{\text { Pr } \text { ogram }} \cdot \frac{\text { Cycles }}{\text { Instruction }} \cdot \frac{\text { Seconds }}{\text { Cycle }}
\end{aligned}
$$

Cycles Per Instruction (Throughput)

"Cycles per Instruction"

$$
\begin{aligned}
\text { CPI } & =\left(\text { CPU Time }{ }^{*} \text { Clock Rate }\right) / \text { Instruction Count } \\
& =\text { Cycles } / \text { Instruction Count }
\end{aligned}
$$

$$
\text { CPU time }=\text { Cycle } \text { Time } \times \sum_{j=1}^{n} C P I_{j} \times I_{j}
$$

"Instruction Frequency"
Ij is the count of instruction-j in the total instruction set

$$
\text { CPI }=\sum_{j=1}^{n} \text { CPI }_{j} \times \mathrm{F}_{j} \quad \text { where } \mathrm{F}_{j}=\frac{\mathrm{I}_{j}}{\text { Instruction Count }}
$$

Example

Op		Freq	Cycles	CPI
ALU		50%	1	0.5
Load		20%	5	1.0
Store	10%	3	0.3	
Branch	20%	2	$\frac{0.4}{2.2}$	

Remember:
CPI is $F \times \#$ cycles

How much faster would the machine be if a better data cache reduced the average load time to 2 cycles?

- Load $\rightarrow 20 \% \times 2$ cycles $=.4$

$$
0.5+0.4+0.3+0.4
$$

- Total CPI $2.2 \rightarrow 1.6$
- Relative performance is 2.2 / $1.6=1.38$ faster

How does this compare with reducing the branch instruction to 1 cycle?

- Branch $\rightarrow 20 \% \times 1$ cycle $=.2$
- Total CPI $2.2 \rightarrow 2.0$
- Relative performance is 2.2 / $2.0=1.1$

Evaluating Instruction Sets and Implementation

Design-time metrics:

- Can it be implemented, in how long, at what cost?
- Can it be programmed? Ease of compilation?

Static Metrics:

- How many bytes does the program occupy in memory?

Dynamic Metrics:

- How many instructions are executed?
- How many bytes does the processor fetch to execute the program?
- How many clocks are required per instruction?

Best Metric:
Time to execute the program!

NOTE: Depends on instructions set, processor organization, and compilation techniques.

Inst. Count

Clocking Methodology

All storage elements are clocked by the same clock edge

- Inputs are updated at each clock tick
- All outputs MUST be stable before the next clock tick

Critical Path \& Cycle Time

Instructions follows various paths in these logic gates...
Critical path: the slowest path between any two storage devices
Cycle time is a function of the critical path

