
Background
• Virtual memory – separation of user logical

memory from physical memory
– Only part of the program needs to be in memory

for execution
– Logical address space can therefore be much

larger than physical address space
– Allows address spaces to be shared by several

processes
– Allows for more efficient process creation
– More programs running concurrently
– Less I/O needed to load or swap processes

Virtual Memory That is Larger Than Physical Memory

Logical
memory
space for
a process

Demand Paging
• Implementation way for VIRTUAL MEMORY

• Bring a page into memory only when it is

needed
– Less I/O needed, no unnecessary I/O
– Less memory needed
– Faster response

• Page is needed  reference to it
– invalid reference  abort
– not-in-memory  bring to memory

Transfer of a Paged Memory to Contiguous Disk Space

Valid-Invalid Bit
• With each page table entry

a valid–invalid bit is
associated
– v  in-memory – memory

resident,
– i  not-in-memory)

• Initially valid–invalid bit is
set to i on all entries

• During address translation,
if valid–invalid bit in page
table entry is I  page fault

v

v

v

v

i

i

i

….

Frame # valid-invalid bit

page table

Page Fault
• If there is a reference to a page, first reference to

that page will trap to operating system:
 page fault

1. Operating system looks at another table to decide:

– Invalid reference  abort (segmentation!!)
– Just not in memory

2. Get empty frame
3. Swap page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

Steps in Handling a Page Fault

May be
segmentation
error!

What to do if no free frame!!

What Happens if There is no Free Frame?

• Page replacement – find some page in
memory, but not really in use, page it out

– Algorithm – terminate? swap out? replace the
page?

– Performance – want an algorithm which will
result in minimum number of page faults

Page Replacement

First-In-First-Out (FIFO) Algorithm

• Reference string:
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a
time per process)

15 page faults

Optimal Algorithm

• Replace page that will not be used for longest period of time
– 9 is optimal for the example on the next slide

• How do you know this?

– Can’t read the future

Least Recently Used (LRU) Algorithm

• Use past knowledge rather than future
• Replace page that has not been used in the

most amount of time
• Associate time of last use with each page
• 12 faults – better than FIFO but worse than

OPT

Exercise

