
Memory Management

• All data in memory before and after
processing

• All instructions in memory in order to execute

• Memory management determines what is to
be in memory

• Memory management activities
– Keeping track of which parts of memory are

currently being used and by which process
– Deciding which processes and data to move into

and out of memory
– Allocating and deallocating memory space as

needed by running processes

Performance of Various Levels of Storage

• Movement between levels of storage
hierarchy can be explicit or implicit

How a Modern Computer Works

A von Neumann architecture

Base and Limit Registers

• A pair of base and limit registers define
the logical address space

Multistep Processing of a User Program

Compile time: If bind memory
location in compile time; must
recompile code if location changes

Load time: Must generate
relocatable code if memory
location is not known at compile
time

Execution time: Binding delayed
until run time; the process can be
moved during its execution from
one memory segment to another

Need hardware support for
address maps (e.g., base and
limit registers)

Memory-Management Unit (MMU)

• Hardware device that at run time maps virtual
address to physical address
– Logical address – generated by the CPU; also referred

to as virtual address

– Physical address – address seen by the memory unit

• The user program deals with logical addresses; it
never sees the real physical addresses
– Execution-time binding occurs when reference is made

to location in memory

– Logical address bound to physical addresses

Dynamic relocation using a
relocation register

Dynamic Loading and Dynamic Linking

• Routine is not loaded until it is called
• Better memory-space utilization; unused routine is

never loaded
• All routines kept on disk in relocatable load format

• Static linking – system libraries and program code

combined by the loader into the binary program
image

• Dynamic linking –linking postponed until execution
time

• Dynamic linking is particularly useful for libraries

Swapping
• A process can be swapped temporarily out of memory to a backing

store, and then brought back into memory for continued execution
– Total physical memory space of processes can exceed physical

memory
• Major part of swap time is transfer time; total transfer time is directly

proportional to the amount of memory swapped
• System maintains a ready queue of ready-to-run processes which have

memory images on disk
• Does the swapped out process need to swap back in to same physical

addresses?
• Modified versions of swapping are found on many systems (i.e., UNIX,

Linux, and Windows)

– Swapping normally disabled

– Started if more than threshold amount of memory allocated

– Disabled again once memory demand reduced below threshold

Schematic View of Swapping

Context Switch Time including Swapping

• If next processes to be put on CPU is not in memory, need to
swap out a process and swap in target process

• Context switch time can then be very high

• 100MB process swapping to hard disk with transfer rate of
50MB/sec => 2 sec = 2000 ms

– Plus disk latency of 8 ms

– Swap out time of 2008 ms

– Plus swap in of same sized process

– Total context switch swapping component time of 4016ms
(> 4 seconds)

Contiguous Allocation

• Multiple-partition allocation

– When a Process arrives, it is allocated memory
from a large enough memory free space to place it

– When a Process terminates, frees its partition,
adjacent free partitions combined

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Contiguous Memory Allocation Example

job queue

process memory time

P1 600K 10

P2 1000K 5

P3 300K 20

P4 700K 8

P5 500K 15

0

2160k

400k

2560k

Operating
system

Operating
system

0

400k

1000k

2000k

2300k

2560k

P1

P3

(b)

Operating
system

0

400k

1000k

2000k

2300k

2560k

P1

P2

P3

(a)

Operating
system

0

400k

1000k

2000k

2300k

2560k

P1

P4

P3

(c)

1700k

Operating
system

0

400k

1000k

2000k

2300k

2560k

P4

P3

(d)

1700k

Operating
system

0

400k

1000k

2000k

2300k

2560k

P5

P4

P3

(e)

1700k

900k

P2
terminates

Allocate P4 P1
terminates

Allocate P5

Figure 8.8 Memory allocation and long term scheduling

New process is
loaded is there is
memory for it!

Dynamic Storage-Allocation Problem

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size
– Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search

entire list
– Produces the largest leftover hole

How to satisfy a request of size n for a Process from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage

utilization

Fragmentation

• total memory space exists to satisfy a request,
but it is not contiguous
– External Fragmentation

Reduce external fragmentation
by compaction

- Shuffle memory contents
to place all free memory
together in one large block
- Compaction is possible
only if relocation is
dynamic, and is done at
execution time

Paging
• Logical address space of a process can be non-contiguous

• Divide physical memory into fixed-sized blocks called frames
– Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages

• Keep track of all free frames

• To run a program of size N pages, need to find N free frames
and load program

• Set up a page table to translate logical to physical addresses

Address Translation Scheme

• Address generated by CPU is divided into:
– Page number (p) – used as an index into a page table which

contains base address of each page in physical memory
– Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

– For given logical address space 2m and page size 2n

page number page offset

p d

m - n n

Paging Hardware

Paging Model of Logical and Physical Memory

CPU uses these addresses

Paging Example

n=2 and m=4

32-byte memory and 4-byte

pages

page number page offset

p d

m - n n

Tracking Free Frames

Before allocation After allocation

Implementation of Page Table

• Page table is kept in main memory

• In this scheme every data/instruction access
requires two memory accesses
– One for the page table and one for the data /

instruction

• The two memory access problem can be solved by
the use of a special fast-lookup hardware cache
called associative memory or translation look-aside
buffers (TLBs)

• TLBs typically small (64 to 1,024 entries)

Paging Hardware With TLB

64-bit Logical Address Space

• If page size is 4 KB (212)

– Then page table has 252 entries

– If two level scheme, inner page tables could be 210
4-byte entries

– Address would look like

outer page page offset

p1 p2 d

42 10 12

inner page

Three-level Paging Scheme

2 page
tables, or 2
level caches

3 page
tables, or 3
level caches

User’s View of a Program

A program is a collection of
segments

A segment is a logical unit such as:
 main program
 procedure
 function
 method
 object
 local variables, global variables
 common block
 stack
 symbol table
 arrays

Logical View of Segmentation

1

3

2

4

user space

1

4

2

3

physical memory space

Logical address consists of a two
tuple:
 <segment-number, offset>,

Segment table – maps two-
dimensional physical addresses;
each table entry has:

base – contains the starting
physical address where the
segments reside in memory
limit – specifies the length of
the segment

Example of Segmentation

Segmentation Hardware

Segmentation fault!!

Exercises

