
Memory Management 

• All data in memory before and after 
processing 
 

• All instructions in memory in order to execute 
 

• Memory management determines what is to 
be in memory 

• Memory management activities 
– Keeping track of which parts of memory are 

currently being used and by which process 
– Deciding which processes and data to move into 

and out of memory 
– Allocating and deallocating memory space as 

needed by running processes 
 



Performance of Various Levels of Storage 

• Movement between levels of storage 
hierarchy can be explicit or implicit 



How a Modern Computer Works 

A von Neumann architecture 



Base and Limit Registers 

• A pair of base and limit registers define 
the logical address space 



Multistep Processing of a User Program  

Compile time:  If bind memory 
location in compile time; must 
recompile code if location changes 
 
Load time:  Must generate 
relocatable code if memory 
location is not known at compile 
time 
 
Execution time:  Binding delayed 
until run time; the process can be 
moved during its execution from 
one memory segment to another 

Need hardware support for 
address maps (e.g., base and 
limit registers) 

 



Memory-Management Unit (MMU) 

• Hardware device that at run time maps virtual 
address to physical address 
– Logical address – generated by the CPU; also referred 

to as virtual address 

– Physical address – address seen by the memory unit 

• The user program deals with logical addresses; it 
never sees the real physical addresses 
– Execution-time binding occurs when reference is made 

to location in memory 

– Logical address bound to physical addresses 



Dynamic relocation using a  
relocation register 



Dynamic Loading and Dynamic Linking 

• Routine is not loaded until it is called 
• Better memory-space utilization; unused routine is 

never loaded 
• All routines kept on disk in relocatable load format 

 
• Static linking – system libraries and program code 

combined by the loader into the binary program 
image 

• Dynamic linking –linking postponed until execution 
time 

• Dynamic linking is particularly useful for libraries 



Swapping 
• A process can be swapped temporarily out of memory to a backing 

store, and then brought back into memory for continued execution 
– Total physical memory space of processes can exceed physical 

memory 
• Major part of swap time is transfer time; total transfer time is directly 

proportional to the amount of memory swapped 
• System maintains a ready queue of ready-to-run processes which have 

memory images on disk 
• Does the swapped out process need to swap back in to same physical 

addresses? 
• Modified versions of swapping are found on many systems (i.e., UNIX, 

Linux, and Windows) 

– Swapping normally disabled 

– Started if more than threshold amount of memory allocated 

– Disabled again once memory demand reduced below threshold 



Schematic View of Swapping 



Context Switch Time including Swapping 

• If next processes to be put on CPU is not in memory, need to 
swap out a process and swap in target process 

• Context switch time can then be very high 

 

• 100MB process swapping to hard disk with transfer rate of 
50MB/sec  => 2 sec = 2000 ms 

– Plus disk latency of 8 ms 

– Swap out time of 2008 ms 

– Plus swap in of same sized process 

– Total context switch swapping component time of 4016ms 
(> 4 seconds) 



Contiguous Allocation 

• Multiple-partition allocation 

– When a Process arrives, it is allocated memory 
from a large enough memory free space to place it 

– When a Process terminates, frees its partition, 
adjacent free partitions combined 
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Contiguous Memory Allocation Example 
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Figure 8.8   Memory allocation and long term scheduling 

New process is 
loaded is there is 
memory for it! 



Dynamic Storage-Allocation Problem 

• First-fit:  Allocate the first hole that is big enough 
 

• Best-fit:  Allocate the smallest hole that is big enough; 
must search entire list, unless ordered by size   
– Produces the smallest leftover hole 

 
• Worst-fit:  Allocate the largest hole; must also search 

entire list   
– Produces the largest leftover hole 

How to satisfy a request of size n for a Process from a list of free holes? 

First-fit and best-fit better than worst-fit in terms of speed and storage 

utilization 



Fragmentation 

• total memory space exists to satisfy a request, 
but it is not contiguous  
– External Fragmentation 

Reduce external fragmentation 
by compaction 

- Shuffle memory contents 
to place all free memory 
together in one large block 
- Compaction is possible 
only if relocation is 
dynamic, and is done at 
execution time  

 



Paging 
• Logical address space of a process can be non-contiguous 

 

• Divide physical memory into fixed-sized blocks called frames 
– Size is power of 2, between 512 bytes and 16 Mbytes 

 
• Divide logical memory into blocks of same size called pages 

 

• Keep track of all free frames 
 

• To run a program of size N pages, need to find N free frames 
and load program 
 

• Set up a page table to translate logical to physical addresses 



Address Translation Scheme 

• Address generated by CPU is divided into: 
– Page number (p) – used as an index into a page table which 

contains base address of each page in physical memory 
– Page offset (d) – combined with base address to define the 

physical memory address that is sent to the memory unit 
 
 
 
 
 
 
 

– For given logical address space 2m and page size 2n 

page number page offset 

p d 

m - n n 



Paging Hardware 



Paging Model of Logical and Physical Memory 

CPU uses these addresses 



Paging Example 

n=2 and m=4    

32-byte memory and 4-byte 

pages 

page number page offset 

p d 

m - n n 



Tracking Free Frames 

Before allocation After allocation 



Implementation of Page Table 

• Page table is kept in main memory 
 

• In this scheme every data/instruction access 
requires two memory accesses 
– One for the page table and one for the data / 

instruction 
 

• The two memory access problem can be solved by 
the use of a special fast-lookup hardware cache 
called associative memory or translation look-aside 
buffers (TLBs) 
 

 
• TLBs typically small (64 to 1,024 entries) 
 



Paging Hardware With TLB 



64-bit Logical Address Space 

• If page size is 4 KB (212) 

– Then page table has 252 entries 

– If two level scheme, inner page tables could be 210 
4-byte entries 

– Address would look like 

outer page page offset 

p1 p2 d 

42 10 12 

inner page 



Three-level Paging Scheme 

2 page 
tables, or 2 
level caches 

3 page 
tables, or 3 
level caches 



User’s View of a Program 

A program is a collection of 
segments 
 
A segment is a logical unit such as: 
   main program 
   procedure  
   function 
   method 
   object 
   local variables, global variables 
   common block 
   stack 
   symbol table 
   arrays 



Logical View of Segmentation 
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Logical address consists of a two 
tuple: 
       <segment-number, offset>, 
 

 
Segment table – maps two-
dimensional physical addresses; 
each table entry has: 

base – contains the starting 
physical address where the 
segments reside in memory 
limit – specifies the length of 
the segment 

 



Example of Segmentation 



Segmentation Hardware 

Segmentation fault!! 



Exercises 


