
482000000000357
Operating Systems

Fall 2012

Lecture 4: CPU Scheduling

Assist. Prof. Ediz ŞAYKOL
ediz.saykol@beykent.edu.tr

10/25/2013 2

Operating System - Main Goals

• Interleave the execution of the number of
processes to maximize processor utilization
while providing reasonable response time

• The main idea of scheduling:

The system decides:

• Who will run

• When will it run

• For how long

In order to achieve its goals

CPU Scheduler

• Selects from among the processes in ready queue, and
allocates the CPU to one of them
– Queue may be ordered in various ways

• CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

• Scheduling under 1 and 4 is nonpreemptive
• All other scheduling is preemptive

– access to shared data
– interrupts during crucial OS activities

10/25/2013 3

Dispatcher
• Dispatcher module gives control of the CPU to

the process selected by the short-term
scheduler;
– this involves:

• switching context
• switching to user mode
• jumping to the proper location in the user program to

restart/resume that program

• Dispatch latency – time it takes for the
dispatcher to stop one process and start
another running

10/25/2013 4

Scheduling Criteria

• Fairness: each process gets a “fair share” of the CPU

• CPU utilization – keep the CPU as busy as possible

• Throughput – # of processes that complete their execution per time
unit

• Turnaround time – amount of time to execute a particular process

• Waiting time – amount of time a process has been waiting in the
ready queue

• Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)

10/25/2013 5

Scheduling Algorithm Optimization Criteria

• Be fair
• Max CPU utilization
• Max throughput
• Min turnaround time
• Min waiting time
• Min response time

• Conflicting Goals:

– Fairness vs Throughput:
Consider a very long job. Should it be run?

10/25/2013 6

First-Come, First-Served (FCFS) Scheduling

 Process Burst Time
 P1 24
 P2 3
 P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 30 0

10/25/2013 7

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
 P2 , P3 , P1
• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case
• Convoy effect - short process behind long process

– Consider one CPU-bound and many I/O-bound processes

P1 P3 P2

6 3 30 0

10/25/2013 8

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its
next CPU burst
– Use these lengths to schedule the process with

the shortest time

• SJF is optimal – gives minimum average
waiting time for a given set of processes
– The difficulty is knowing the length of the next

CPU request

– Could ask the user

10/25/2013 9

Example of SJF

 ProcessArriva l Time Burst Time
 P1 0.0 6
 P2 2.0 8
 P3 4.0 7
 P4 5.0 3
• SJF scheduling Gannt chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3 P1

3 16 0 9

P2

24

10/25/2013 10

Example of Shortest-remaining-time-first

• Now we add the concepts of varying arrival times and preemption to the
analysis

 ProcessA arri Arrival TimeT Burst Time
 P1 0 8
 P2 1 4
 P3 2 9
 P4 3 5
• Preemptive SJF Gantt Chart

• Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec

P1 P1 P2

1 17 0 10

P3

26 5

P4

10/25/2013 11

Priority Scheduling

• A priority number (integer) is associated with each
process

• The CPU is allocated to the process with the highest
priority (smallest integer  highest priority)
– Preemptive
– Nonpreemptive

• SJF is priority scheduling where priority is the inverse of
predicted next CPU burst time

• Problem  Starvation – low priority processes may
never execute

• Solution  Aging – as time progresses increase the
priority of the process

10/25/2013 12

Example of Priority Scheduling

 ProcessAarri Burst TimeT Priority
 P1 10 3
 P2 1 1
 P3 2 4
 P4 1 5
 P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec

P2 P3 P5

1 18 0 16

P4

19 6

P1

10/25/2013 13

Round Robin (RR)
• Each process gets a small unit of CPU time (time quantum q),

usually 10-100 milliseconds.
• After this time q has elapsed, the process is preempted and

added to the end of the ready queue.
• If there are n processes in the ready queue and the time

quantum is q,
– then each process gets 1/n of the CPU time in chunks of at most

q time units at once.
– No process waits more than (n-1) x q time units.

• Timer interrupts every quantum to schedule next process
• Performance

– q large  FCFS
– q small  q must be large with respect to context switch,

otherwise overhead is too high

10/25/2013 14

Example of RR with Time Quantum = 4

 Process Burst Time
 P1 24
 P2 3
 P3 3

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but
better response time

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

10/25/2013 15

Time Quantum and Context Switch Time

10/25/2013 16

q must be large with respect to context switch!

Multilevel Queue

• Ready queue is partitioned into separate queues, eg:
– foreground (interactive)
– background (batch)

• Process permanently in a given queue

• Each queue has its own scheduling algorithm:
– foreground – RR
– background – FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
– Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes;
• i.e., 80% to foreground in RR
• 20% to background in FCFS

10/25/2013 17

Multilevel Queue Scheduling

10/25/2013 18

Ex. Multilevel Feedback Queue

• Three queues:
– Q0 – RR with time quantum 8 milliseconds
– Q1 – RR time quantum 16 milliseconds
– Q2 – FCFS

• Scheduling
– A new job enters queue Q0 which is served FCFS

• When it gains CPU, job receives 8 milliseconds
• If it does not finish in 8 milliseconds, job is moved to queue Q1

– At Q1 job is again served FCFS and receives 16 additional
milliseconds
• If it still does not complete, it is preempted and moved to

queue Q2

10/25/2013 19

Multilevel Feedback Queues

10/25/2013 20

