Diffie-Hellman Key Exchange

- first public-key type scheme proposed
- by Diffie & Hellman in 1976 along with the exposition of public key concepts
- is a practical method for public exchange of a secret key
- used in a number of commercial products

Diffie-Hellman Key Exchange

- a public-key distribution scheme
 - cannot be used to exchange an arbitrary message
 - rather it can establish a <u>common key</u> known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- security relies on the difficulty of computing discrete logarithms (similar to factoring) – hard

Diffie-Hellman Setup

- all users agree on global parameters:
 - large prime integer or polynomial ${\bf q}$
 - a being a primitive root mod ${\boldsymbol{q}}$
 - a number whose powers successively generate all the elements mod q
- each user (eg. A) generates their key
 - chooses a secret key (number): $x_A < q$
 - compute their public key: $y_A = a^{x_A} \mod q$
 - each user makes public that key $y_{\rm A}$

Diffie-Hellman Key Exchange

- shared session key for users A & B is K_{AB} :
 - $K_{AB} = a^{x_A.x_B} \mod q$ = $y_A^{x_B} \mod q$ (which **B** can compute) = $y_B^{x_A} \mod q$ (which **A** can compute)
- K_{AB} is used as session key in private-key encryption scheme between Alice and Bob
- if Alice and Bob subsequently communicate, they will have the same key as before, unless they choose new public-keys
- attacker needs an x, must solve discrete log

Diffie-Hellman Example

- users Alice & Bob who wish to swap keys:
- agree on prime q=353 and a=3
- select random secret keys:

– A chooses $x_A = 97$, B chooses $x_B = 233$

- compute respective **public** keys:
 - $-y_{\rm A}=3^{97} \mod 353 = 40$ (Alice) $-y_{\rm B}=3^{233} \mod 353 = 248$ (Bob)
- compute **shared session** key as:

-
$$K_{AB} = y_B^{x_A} \mod 353 = 248^{97} = 160$$
 (Alice)
- $K_{AB} = y_A^{x_B} \mod 353 = 40^{233} = 160$ (Bob)

Key Exchange Protocols

- users could create <u>random</u> private/public D-H keys each time they communicate
- users could create a known private/public D-H key and publish in a directory, then consulted and used to securely communicate with them
- both of these are vulnerable to Meet-in-the-Middle Attack
- authentication of the keys is needed

Man-in-the-Middle Attack

- 1. Darth prepares for the attack by generating two random private keys X_{D1} and X_{D2} and then computing the corresponding public keys Y_{D1} and Y_{D2}
- 2. Alice transmits Y_A to Bob.
- 3. Darth intercepts Y_A and transmits Y_{D1} to Bob. Darth also calculates K2 = (Y_A)^ X_{D2} mod q
- 4. Bob receives Y_{D1} and calculates $K1=(Y_{D1})^{A} X_{B} \mod q$
- 5. Bob transmits Y_B to Alice.
- 6. Darth intercepts Y_B and transmits Y_{D2} to Alice. Darth calculates K1=(Y_B)^ X_{D1} mod q
- 7. Alice receives Y_{D2} and calculates $K2=(Y_{D2})^{A} X_{A} \mod q$.

Man-in-the-Middle Attack

- Bob and Alice think that they share a secret key, but instead
 - Bob and Darth share secret key K1 and
 - Alice and Darth share secret key K2.
- All future communication between Bob and Alice is compromised in the following way:
 - 1. Alice sends an encrypted message M: E(K2, M).
 - 2. Darth intercepts the encrypted message and decrypts it, to recover M.
 - 3. Darth sends Bob E(K1, M) or E(K1, M'), where M' is any message.
 - In (2), Darth simply wants to eavesdrop on the communication without altering it.
 - In (3), Darth wants to modify the message going to Bob.

ElGamal Cryptography

- public-key cryptosystem related to D-H
- so uses exponentiation in a finite (Galois)
- with security based difficulty of computing discrete logarithms, as in D-H
- each user (eg. A) generates their key
 - chooses a secret key (number): $1 < x_A < q-1$
 - compute their public key: $y_A = a^{x_A} \mod q$

ElGamal Message Exchange

- Bob encrypt a message to send to A computing
 - represent message M in range 0 <= M <= q-1
 - longer messages must be sent as blocks
 - chose random integer k with 1 <= k <= q-1
 - compute <u>one-time key</u> $K = y_A^k \mod q$
 - encrypt M as a pair of integers (C_1, C_2) where

•
$$C_1 = a^k \mod q$$
; $C_2 = KM \mod q$

- A then recovers message by
 - recovering key K as $K = C_1^{x_A} \mod q$
 - computing M as $M = C_2 K^{-1} \mod q$
- a unique k must be used each time
 - otherwise result is insecure

ElGamal Example

- use field GF(19) q=19 and a=10
- Alice computes her key:

- A chooses $x_A = 5$ & computes $y_A = 10^5 \mod 19 = 3$

- Bob sends message m=17 as (11, 5) by
 - chosing random k=6
 - computing $K = y_A^k \mod q = 3^6 \mod 19 = 7$
 - computing $C_1 = a^k \mod q = 10^6 \mod 19 = 11;$

 $C_2 = KM \mod q = 7.17 \mod 19 = 5$

- Alice recovers original message by computing:
 - recover K = C₁^{x_A} mod q = 11⁵ mod 19 = 7
 - **compute inverse** $K^{-1} = 7^{-1} = 11$
 - recover M = C₂ K⁻¹ mod q = 5.11 mod 19 = 17