
Diffie-Hellman Key Exchange

• first public-key type scheme proposed

• by Diffie & Hellman in 1976 along with the
exposition of public key concepts

• is a practical method for public exchange of a
secret key

• used in a number of commercial products

Diffie-Hellman Key Exchange

• a public-key distribution scheme
– cannot be used to exchange an arbitrary message

– rather it can establish a common key known only to the
two participants

• value of key depends on the participants (and their
private and public key information)

• based on exponentiation in a finite (Galois) field
(modulo a prime or a polynomial) - easy

• security relies on the difficulty of computing discrete
logarithms (similar to factoring) – hard

Diffie-Hellman Setup

• all users agree on global parameters:

– large prime integer or polynomial q

– a being a primitive root mod q

• a number whose powers successively generate all
the elements mod q

• each user (eg. A) generates their key

– chooses a secret key (number): xA < q

– compute their public key: yA = a
xA mod q

– each user makes public that key yA

Diffie-Hellman Key Exchange

• shared session key for users A & B is KAB:
KAB = a

xA.xB mod q

= yA
xB mod q (which B can compute)

= yB
xA mod q (which A can compute)

• KAB is used as session key in private-key encryption
scheme between Alice and Bob

• if Alice and Bob subsequently communicate, they will
have the same key as before, unless they choose
new public-keys

• attacker needs an x, must solve discrete log

Diffie-Hellman Example

• users Alice & Bob who wish to swap keys:

• agree on prime q=353 and a=3

• select random secret keys:
– A chooses xA=97, B chooses xB=233

• compute respective public keys:
– yA=3

97
 mod 353 = 40 (Alice)

– yB=3
233

 mod 353 = 248 (Bob)

• compute shared session key as:
– KAB= yB

xA mod 353 = 248
97
 = 160 (Alice)

– KAB= yA
xB mod 353 = 40

233
 = 160 (Bob)

Key Exchange Protocols

• users could create random private/public D-H
keys each time they communicate

• users could create a known private/public D-H
key and publish in a directory, then consulted
and used to securely communicate with them

• both of these are vulnerable to Meet-in-the-
Middle Attack

• authentication of the keys is needed

Man-in-the-Middle Attack
1. Darth prepares for the attack by generating two random

private keys XD1 and XD2 and then computing the
corresponding public keys YD1 and YD2

2. Alice transmits YA to Bob.

3. Darth intercepts YA and transmits YD1 to Bob. Darth also
calculates K2 = (YA)^ XD2 mod q

4. Bob receives YD1 and calculates K1=(YD1)^ XB mod q

5. Bob transmits YB to Alice.

6. Darth intercepts YB and transmits YD2 to Alice. Darth
calculates K1=(YB)^ XD1 mod q

7. Alice receives YD2 and calculates K2=(YD2)^ XA mod q .

Man-in-the-Middle Attack

• Bob and Alice think that they share a secret key, but
instead
– Bob and Darth share secret key K1 and

– Alice and Darth share secret key K2.

• All future communication between Bob and Alice is
compromised in the following way:
1. Alice sends an encrypted message M: E(K2, M).

2. Darth intercepts the encrypted message and decrypts it, to
recover M.

3. Darth sends Bob E(K1, M) or E(K1, M'), where M' is any
message.

In (2), Darth simply wants to eavesdrop on the communication
without altering it.

In (3), Darth wants to modify the message going to Bob.

ElGamal Cryptography

• public-key cryptosystem related to D-H

• so uses exponentiation in a finite (Galois)

• with security based difficulty of computing
discrete logarithms, as in D-H

• each user (eg. A) generates their key

– chooses a secret key (number): 1 < xA < q-1

– compute their public key: yA = a
xA mod q

ElGamal Message Exchange

• Bob encrypt a message to send to A computing
– represent message M in range 0 <= M <= q-1

• longer messages must be sent as blocks

– chose random integer k with 1 <= k <= q-1

– compute one-time key K = yA
k
 mod q

– encrypt M as a pair of integers (C1,C2) where
• C1 = a

k
 mod q ; C2 = KM mod q

• A then recovers message by
– recovering key K as K = C1

xA mod q

– computing M as M = C2 K
-1 mod q

• a unique k must be used each time
– otherwise result is insecure

ElGamal Example
• use field GF(19) q=19 and a=10

• Alice computes her key:
– A chooses xA=5 & computes yA=10

5
mod 19 = 3

• Bob sends message m=17 as (11,5) by
– chosing random k=6

– computing K = yA
k
 mod q = 3

6
 mod 19 = 7

– computing C1 = a
k
 mod q = 10

6
 mod 19 = 11;

 C2 = KM mod q = 7.17 mod 19 = 5

• Alice recovers original message by computing:
– recover K = C1

xA mod q = 11
5
mod 19 = 7

– compute inverse K-1 = 7-1 = 11

– recover M = C2 K
-1 mod q = 5.11 mod 19 = 17

