Diffie-Hellman Key Exchange

- first public-key type scheme proposed
- by Diffie \& Hellman in 1976 along with the exposition of public key concepts
- is a practical method for public exchange of a secret key
- used in a number of commercial products

Diffie-Hellman Key Exchange

- a public-key distribution scheme
- cannot be used to exchange an arbitrary message
- rather it can establish a common key known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- security relies on the difficulty of computing discrete logarithms (similar to factoring) - hard

Diffie-Hellman Setup

- all users agree on global parameters:
- large prime integer or polynomial q
- a being a primitive root mod q
- a number whose powers successively generate all the elements mod q
- each user (eg. A) generates their key
- chooses a secret key (number): $\mathrm{x}_{\mathrm{A}}<\mathrm{q}$
- compute their public key: $y_{A}=a^{x_{A}} \bmod q$
- each user makes public that key Y_{A}

Diffie-Hellman Key Exchange

- shared session key for users A \& B is $K_{A B}$:

$$
\begin{aligned}
& K_{A B}=a^{x_{A} \cdot x_{B}} \bmod q \\
& =y_{A}{ }^{x_{B}} \bmod q \quad(\text { which } \mathbf{B} \text { can compute) } \\
& =y_{B}{ }^{x_{A}} \bmod q \quad \text { (which } \mathbf{A} \text { can compute) }
\end{aligned}
$$

- K_{AB} is used as session key in private-key encryption scheme between Alice and Bob
- if Alice and Bob subsequently communicate, they will have the same key as before, unless they choose new public-keys
- attacker needs an x, must solve discrete log

Diffie-Hellman Example

- users Alice \& Bob who wish to swap keys:
- agree on prime $q=353$ and $a=3$
- select random secret keys:
- A chooses $x_{A}=97, B$ chooses $x_{B}=233$
- compute respective public keys:

$$
\begin{array}{ll}
-\mathrm{y}_{\mathrm{A}}=3^{97} \bmod 353=40 & \text { (Alice) } \\
-\mathrm{y}_{\mathrm{B}}=3^{233} \bmod 353=248 \quad \text { (Bob) }
\end{array}
$$

- compute shared session key as:

$$
\begin{aligned}
& -K_{A B}=y_{B}{ }^{x_{A}} \bmod 353=248^{97}=160 \quad \text { (Alice) } \\
& -\mathrm{K}_{\mathrm{AB}}=\mathrm{Y}_{\mathrm{A}}{ }^{\mathrm{x}_{\mathrm{B}}} \bmod 353=40^{233}=160 \quad \text { (Bob) }
\end{aligned}
$$

Key Exchange Protocols

- users could create random private/public D-H keys each time they communicate
- users could create a known private/public D-H key and publish in a directory, then consulted and used to securely communicate with them
- both of these are vulnerable to Meet-in-theMiddle Attack
- authentication of the keys is needed

Man-in-the-Middle Attack

1. Darth prepares for the attack by generating two random private keys $X_{D 1}$ and $X_{D 2}$ and then computing the corresponding public keys $Y_{D 1}$ and $Y_{D 2}$
2. Alice transmits Y_{A} to Bob.
3. Darth intercepts Y_{A} and transmits $Y_{D 1}$ to Bob. Darth also calculates $\mathrm{K} 2=\left(\mathrm{Y}_{\mathrm{A}}\right)^{\wedge} \mathrm{X}_{\mathrm{D} 2} \operatorname{modq}$
4. Bob receives $Y_{D 1}$ and calculates $K 1=\left(Y_{D 1}\right)^{\wedge} X_{B} \bmod q$
5. Bob transmits Y_{B} to Alice.
6. Darth intercepts Y_{B} and transmits $Y_{D 2}$ to Alice. Darth calculates $\mathrm{K} 1=\left(\mathrm{Y}_{\mathrm{B}}\right)^{\wedge} \mathrm{X}_{\mathrm{D} 1} \operatorname{modq}$
7. Alice receives $Y_{D 2}$ and calculates $K 2=\left(Y_{D 2}\right)^{\wedge} X_{A} \operatorname{modq}$.

Man-in-the-Middle Attack

- Bob and Alice think that they share a secret key, but instead
- Bob and Darth share secret key K1 and
- Alice and Darth share secret key K2.
- All future communication between Bob and Alice is compromised in the following way:

1. Alice sends an encrypted message M: E(K2, M).
2. Darth intercepts the encrypted message and decrypts it, to recover M.
3. Darth sends Bob $E(K 1, M)$ or $E\left(K 1, M^{\prime}\right)$, where M^{\prime} is any message.

In (2), Darth simply wants to eavesdrop on the communication without altering it.
In (3), Darth wants to modify the message going to Bob.

ElGamal Cryptography

- public-key cryptosystem related to D-H
- so uses exponentiation in a finite (Galois)
- with security based difficulty of computing discrete logarithms, as in D-H
- each user (eg. A) generates their key
- chooses a secret key (number): $1<\mathrm{x}_{\mathrm{A}}<\mathrm{q}-1$
- compute their public key: $y_{A}=a^{x_{A}} \bmod q$

ElGamal Message Exchange

- Bob encrypt a message to send to A computing
- represent message M in range $0<=M<=q-1$
- longer messages must be sent as blocks
- chose random integer k with $1<=k<=q-1$
- compute one-time key $K=y_{A}{ }^{k} \bmod q$
- encrypt M as a pair of integers $\left(C_{1}, C_{2}\right)$ where
- $\mathrm{C}_{1}=\mathrm{a}^{\mathrm{k}} \bmod \mathrm{q} ; \mathrm{C}_{2}=\mathrm{KM} \bmod \mathrm{q}$
- A then recovers message by
- recovering key K as $K=C_{1}{ }^{{ }^{A_{A}}} \bmod q$
- computing M as $\mathrm{M}=\mathrm{C}_{2} \mathrm{~K}^{-1} \bmod \mathrm{q}$
- a unique k must be used each time
- otherwise result is insecure

ElGamal Example

- use field GF(19) q=19 and $a=10$
- Alice computes her key:
- A chooses $\mathrm{x}_{\mathrm{A}}=5$ \& computes $\mathrm{y}_{\mathrm{A}}=10^{5} \bmod 19=3$
- Bob sends message $m=17$ as $(11,5)$ by
- chosing random $\mathrm{k}=6$
- computing $K={y_{A}}^{k} \bmod q=3^{6} \bmod 19=7$
- computing $\mathrm{C}_{1}=\mathrm{a}^{\mathrm{k}} \bmod \mathrm{q}=10^{6} \bmod 19=11$;

$$
\mathrm{C}_{2}=\mathrm{KM} \bmod \mathrm{q}=7.17 \bmod 19=5
$$

- Alice recovers original message by computing:
$-\operatorname{recover} K=C_{1}{ }^{\mathrm{X}_{\mathrm{A}}} \bmod \mathrm{q}=11^{5} \bmod 19=7$
- compute inverse $\mathrm{K}^{-1}=7^{-1}=11$
$-\operatorname{recover} M=C_{2} K^{-1} \bmod q=5.11 \bmod 19=17$

