
Diffie-Hellman Key Exchange 

• first public-key type scheme proposed  

• by Diffie & Hellman in 1976 along with the 
exposition of public key concepts 

• is a practical method for public exchange of a 
secret key 

• used in a number of commercial products 



Diffie-Hellman Key Exchange 

• a public-key distribution scheme  
– cannot be used to exchange an arbitrary message  

– rather it can establish a common key known only to the 
two participants  

• value of key depends on the participants (and their 
private and public key information)  

• based on exponentiation in a finite (Galois) field 
(modulo a prime or a polynomial) - easy 

• security relies on the difficulty of computing discrete 
logarithms (similar to factoring) – hard 



Diffie-Hellman Setup 

• all users agree on global parameters: 

– large prime integer or polynomial q 

– a being a primitive root mod q 

• a number whose powers successively generate all 
the elements mod q 

• each user (eg. A) generates their key 

– chooses a secret key (number): xA < q  

– compute their public key: yA = a
xA mod q 

– each user makes public that key yA 



Diffie-Hellman Key Exchange 

• shared session key for users A & B is KAB:  
KAB = a

xA.xB mod q 

= yA
xB mod q  (which B can compute)  

= yB
xA mod q  (which A can compute)  

• KAB is used as session key in private-key encryption 
scheme between Alice and Bob 

• if Alice and Bob subsequently communicate, they will 
have the same key as before, unless they choose 
new public-keys  

• attacker needs an x, must solve discrete log 



Diffie-Hellman Example  

• users Alice & Bob who wish to swap keys: 

• agree on prime q=353 and a=3 

• select random secret keys: 
– A chooses xA=97, B chooses xB=233 

• compute respective public keys: 
– yA=3

97 
 mod 353 = 40 (Alice) 

– yB=3
233

 mod 353 = 248 (Bob) 

• compute shared session key as: 
– KAB= yB

xA mod 353 = 248
97
 = 160 (Alice) 

– KAB= yA
xB mod 353 = 40

233
 = 160 (Bob) 

 



Key Exchange Protocols 

• users could create random private/public D-H 
keys each time they communicate 

• users could create a known private/public D-H 
key and publish in a directory, then consulted 
and used to securely communicate with them 

• both of these are vulnerable to Meet-in-the-
Middle Attack 

• authentication of the keys is needed 

 



Man-in-the-Middle Attack 
1. Darth prepares for the attack by generating two random 

private keys XD1 and XD2 and then computing the 
corresponding public keys YD1 and YD2 

2.  Alice transmits YA to Bob.  

3.  Darth intercepts YA and transmits YD1 to Bob. Darth also 
calculates K2 = (YA  )^ XD2 mod q   

4. Bob receives YD1 and calculates K1=(YD1 )^ XB mod q 

5. Bob transmits YB to Alice.   

6. Darth intercepts YB and transmits YD2 to Alice. Darth 
calculates K1=(YB )^ XD1  mod q 

7. Alice receives YD2 and calculates K2=(YD2 )^ XA mod q . 



Man-in-the-Middle Attack 

• Bob and Alice think that they share a secret key, but 
instead  
– Bob and Darth share secret key K1 and  

– Alice and Darth share secret key K2.  

• All future communication between Bob and Alice is 
compromised in the following way:    
1. Alice sends an encrypted message M: E(K2, M).   

2. Darth intercepts the encrypted message and decrypts it, to 
recover M.   

3. Darth sends Bob E(K1, M) or E(K1, M'), where M' is any 
message.  

 

In (2), Darth simply wants to eavesdrop on the communication 
without altering it.  

In (3), Darth wants to modify the message going to Bob.  



ElGamal Cryptography 

• public-key cryptosystem related to D-H 

• so uses exponentiation in a finite (Galois) 

• with security based difficulty of computing 
discrete logarithms, as in D-H 

• each user (eg. A) generates their key 

– chooses a secret key (number): 1 < xA < q-1  

– compute their public key: yA = a
xA mod q 

 



ElGamal Message Exchange 

• Bob encrypt a message to send to A computing 
– represent message M in range 0 <= M <= q-1 

• longer messages must be sent as blocks 

– chose random integer k with 1 <= k <= q-1 

– compute one-time key K = yA
k
 mod q 

– encrypt M as a pair of integers (C1,C2) where 
• C1 = a

k
 mod q ; C2 = KM mod q 

• A then recovers message by 
– recovering key K  as K = C1

xA mod q 

– computing M as M = C2 K
-1 mod q 

• a unique k must be used each time 
– otherwise result is insecure 



ElGamal Example  
• use field GF(19) q=19 and a=10 

• Alice computes her key: 
– A chooses xA=5 & computes yA=10

5 
mod 19 = 3 

• Bob sends message m=17 as (11,5) by 
– chosing random k=6 

– computing K = yA
k
 mod q = 3

6
 mod 19 = 7 

– computing C1 = a
k
 mod q = 10

6
 mod 19 = 11;  

 C2 = KM mod q = 7.17 mod 19 = 5 

• Alice recovers original message by computing: 
– recover K = C1

xA mod q = 11
5 
mod 19 = 7 

– compute inverse K-1 = 7-1 = 11 

– recover M = C2 K
-1 mod q = 5.11 mod 19 = 17 

 


